Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria.
Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria; Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4-Krč, Czech Republic.
RNA Biol. 2013 Dec;10(12):1834-41. doi: 10.4161/rna.27100. Epub 2013 Nov 13.
At low temperatures the Escherichia coli rpoS mRNA, encoding the stationary phase sigma factor RpoS, forms an intramolecular secondary structure (iss) that impedes translation initiation. Under these conditions the small RNA DsrA, which is stabilzed by Hfq, forms a duplex with rpoS mRNA sequences opposite of the ribosome-binding site (rbs). Both the DEAD box helicase CsdA and Hfq have been implicated in DsrA·rpoS duplex formation. Hfq binding to A-rich sequences in the rpoS leader has been suggested to restructure the mRNA, and thereby to accelerate DsrA·rpoS duplex formation, which, in turn, was deemed to free the rpoS rbs and to permit ribosome loading on the mRNA. Several experiments designed to elucidate the role of Hfq in DsrA-mediated translational activation of rpoS mRNA have been conducted in vitro. Here, we assessed RpoS synthesis in vivo to further study the role of Hfq in rpoS regulation. We show that RpoS synthesis was reduced when DsrA was ectopically overexpressed at 24 °C in the absence of Hfq despite of DsrA·rpoS duplex formation. This observation indicated that DsrA·rpoS annealing may not be sufficient for efficient ribosome loading on rpoS mRNA. In addition, a HfqG29A mutant protein was employed, which is deficient in binding to A-rich sequences present in the rpoS leader but proficient in DsrA binding. We show that DsrA·rpoS duplex formation occurs in the presence of the HfqG29A mutant protein at low temperature, whereas synthesis of RpoS was greatly diminished. RNase T1 footprinting studies of DsrA·rpoS duplexes in the absence and presence of Hfq or HfqG29A indicated that Hfq is required to resolve a stem-loop structure in the immediate coding region of rpoS mRNA. These in vivo studies corroborate the importance of the A-rich sequences in the rpoS leader and strongly suggest that Hfq, besides stabilizing DsrA and accelerating DsrA·rpoS duplex formation, is also required to convert the rpoS mRNA into a translationally competent form.
在低温下,大肠杆菌 rpoS mRNA 形成了一种分子内二级结构(iss),从而阻碍了翻译起始。在这种条件下,小 RNA DsrA 在 Hfq 的稳定下与核糖体结合位点(rbs)相对的 rpoS mRNA 序列形成双链。DEAD 盒解旋酶 CsdA 和 Hfq 都被认为参与了 DsrA·rpoS 双链的形成。Hfq 与 rpoS 前导区富含 A 的序列结合,被认为可以重构 mRNA,从而加速 DsrA·rpoS 双链的形成,反过来,这又被认为可以释放 rpoS rbs,从而允许核糖体加载到 mRNA 上。已经进行了一些旨在阐明 Hfq 在 DsrA 介导的 rpoS mRNA 翻译激活中的作用的体外实验。在这里,我们在体内评估了 RpoS 的合成,以进一步研究 Hfq 在 rpoS 调控中的作用。我们表明,尽管 DsrA·rpoS 双链形成,但在没有 Hfq 的情况下,DsrA 在外源过表达时,RpoS 的合成在 24°C 时减少。这一观察结果表明,DsrA·rpoS 退火可能不足以有效地将核糖体加载到 rpoS mRNA 上。此外,还使用了 HfqG29A 突变蛋白,该蛋白缺乏与 rpoS 前导区富含 A 的序列结合的能力,但擅长与 DsrA 结合。我们表明,在低温下,DsrA·rpoS 双链形成发生在 HfqG29A 突变蛋白的存在下,而 RpoS 的合成大大减少。在没有 Hfq 或 HfqG29A 的情况下,对 DsrA·rpoS 双链进行 RNase T1 足迹分析表明,Hfq 是将 rpoS mRNA 编码区中立即的茎环结构解析所必需的。这些体内研究证实了 rpoS 前导区富含 A 的序列的重要性,并强烈表明,除了稳定 DsrA 和加速 DsrA·rpoS 双链的形成外,Hfq 还需要将 rpoS mRNA 转化为具有翻译能力的形式。