Suppr超能文献

寻找成功进行药物优化的规则。

Finding the rules for successful drug optimisation.

作者信息

Yusof Iskander, Shah Falgun, Hashimoto Tatsu, Segall Matthew D, Greene Nigel

机构信息

Optibrium Ltd, 7221 Cambridge Research Park, Beach Drive, Cambridge CB25 9TL, UK.

Compound Safety Prediction, Pfizer Global Research & Development, Groton, CT, USA.

出版信息

Drug Discov Today. 2014 May;19(5):680-7. doi: 10.1016/j.drudis.2014.01.005. Epub 2014 Jan 19.

Abstract

Drug discovery is a process of multiparameter optimisation, with the objective of finding compounds that achieve multiple, project-specific property criteria. These criteria are often based on the subjective opinion of the project team, but analysis of historical data can help to find the most appropriate profile. Computational 'rule induction' approaches enable an objective analysis of complex data to identify interpretable, multiparameter rules that distinguish compounds with the greatest likelihood of success for a project. Each property criterion highlights the most critical data that enable effective compound prioritisation decisions. We illustrate this with two applications: determining rules for simple, drug-like properties; and exploring experimental target inhibition data to find rules to reduce the risk of toxicity.

摘要

药物发现是一个多参数优化的过程,目标是找到能够满足多个特定项目属性标准的化合物。这些标准通常基于项目团队的主观意见,但对历史数据的分析有助于找到最合适的特征。计算“规则归纳”方法能够对复杂数据进行客观分析,以识别可解释的多参数规则,这些规则能够区分在项目中最有可能成功的化合物。每个属性标准都突出了最关键的数据,这些数据能够做出有效的化合物优先级决策。我们通过两个应用来说明这一点:确定简单类药物属性的规则;探索实验性靶点抑制数据以找到降低毒性风险的规则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验