Suppr超能文献

一种具有类别可分离性度量的层次化词合并算法。

A hierarchical word-merging algorithm with class separability measure.

机构信息

University of Wollongong, Wollongong.

The University of Adelaide, Adelaide.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):417-35. doi: 10.1109/TPAMI.2013.160.

Abstract

In image recognition with the bag-of-features model, a small-sized visual codebook is usually preferred to obtain a low-dimensional histogram representation and high computational efficiency. Such a visual codebook has to be discriminative enough to achieve excellent recognition performance. To create a compact and discriminative codebook, in this paper we propose to merge the visual words in a large-sized initial codebook by maximally preserving class separability. We first show that this results in a difficult optimization problem. To deal with this situation, we devise a suboptimal but very efficient hierarchical word-merging algorithm, which optimally merges two words at each level of the hierarchy. By exploiting the characteristics of the class separability measure and designing a novel indexing structure, the proposed algorithm can hierarchically merge 10,000 visual words down to two words in merely 90 seconds. Also, to show the properties of the proposed algorithm and reveal its advantages, we conduct detailed theoretical analysis to compare it with another hierarchical word-merging algorithm that maximally preserves mutual information, obtaining interesting findings. Experimental studies are conducted to verify the effectiveness of the proposed algorithm on multiple benchmark data sets. As shown, it can efficiently produce more compact and discriminative codebooks than the state-of-the-art hierarchical word-merging algorithms, especially when the size of the codebook is significantly reduced.

摘要

在基于特征袋的图像识别中,通常倾向于使用小尺寸的视觉码本来获得低维的直方图表示和高的计算效率。这样的视觉码本必须具有足够的判别能力,以实现出色的识别性能。为了创建一个紧凑且具有判别力的码本,本文提出通过最大化保持类可分离性来合并大型初始码本中的视觉词。我们首先表明,这导致了一个困难的优化问题。为了解决这种情况,我们设计了一种次优但非常有效的分层词合并算法,该算法在层次结构的每个级别上都可以最优地合并两个词。通过利用类可分离性度量的特性和设计新颖的索引结构,所提出的算法可以在仅仅 90 秒内将 10000 个视觉词分层合并为两个词。此外,为了展示所提出算法的特性并揭示其优势,我们进行了详细的理论分析,将其与另一个最大化保持互信息的分层词合并算法进行比较,得出了有趣的发现。通过在多个基准数据集上进行实验研究,验证了所提出算法的有效性。结果表明,与最先进的分层词合并算法相比,它可以有效地生成更紧凑和具有判别力的码本,尤其是在码本大小显著减小的情况下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验