Suppr超能文献

增强的束缚粒子运动分析揭示粘性效应。

Enhanced tethered-particle motion analysis reveals viscous effects.

机构信息

Department of Cell Biology, Emory University, Atlanta, Georgia.

Department of Physics, Emory University, Atlanta, Georgia.

出版信息

Biophys J. 2014 Jan 21;106(2):399-409. doi: 10.1016/j.bpj.2013.11.4501.

Abstract

Tethered-particle motion experiments do not require expensive or technically complex hardware, and increasing numbers of researchers are adopting this methodology to investigate the topological effects of agents that act on the tethering polymer or the characteristics of the polymer itself. These investigations depend on accurate measurement and interpretation of changes in the effective length of the tethering polymer (often DNA). However, the bead size, tether length, and buffer affect the confined diffusion of the bead in this experimental system. To evaluate the effects of these factors, improved measurements to calibrate the two-dimensional range of motion (excursion) versus DNA length were carried out. Microspheres of 160 or 240 nm in radius were tethered by DNA molecules ranging from 225 to 3477 basepairs in length in aqueous buffers containing 100 mM potassium glutamate and 8 mM MgCl2 or 10 mM Tris-HCl and 200 mM KCl, with or without 0.5% Tween added to the buffer, and the motion was recorded. Different buffers altered the excursion of beads on identical DNA tethers. Buffer with only 10 mM NaCl and >5 mM magnesium greatly reduced excursion. Glycerol added to increase viscosity slowed confined diffusion of the tethered beads but did not change excursion. The confined-diffusion coefficients for all tethered beads were smaller than those expected for freely diffusing beads and decreased for shorter tethers. Tethered-particle motion is a sensitive framework for diffusion experiments in which small beads on long leashes most closely resemble freely diffusing, untethered beads.

摘要

束缚粒子运动实验不需要昂贵或技术复杂的硬件,越来越多的研究人员采用这种方法来研究作用于束缚聚合物的剂或聚合物本身特性的拓扑效应。这些研究依赖于对束缚聚合物(通常是 DNA)有效长度变化的准确测量和解释。然而,珠子大小、束缚长度和缓冲液会影响珠子在这个实验系统中的受限扩散。为了评估这些因素的影响,进行了改进的测量,以校准二维运动范围(行程)与 DNA 长度的关系。在含有 100mM 谷氨酸钾和 8mM MgCl2 或 10mM Tris-HCl 和 200mM KCl 的缓冲液中,半径为 160 或 240nm 的微球通过长度为 225 至 3477 个碱基对的 DNA 分子束缚,并在缓冲液中添加或不添加 0.5%吐温,记录运动情况。不同的缓冲液改变了相同 DNA 束缚上的珠子行程。仅含 10mM NaCl 和>5mM 镁的缓冲液大大降低了行程。添加甘油以增加粘度会减缓束缚珠的受限扩散,但不会改变行程。所有束缚珠的受限扩散系数都小于自由扩散珠的预期值,并且对于较短的束缚,扩散系数减小。束缚粒子运动是扩散实验的一个敏感框架,其中长皮带上的小珠子最接近自由扩散的无束缚珠子。

相似文献

1
Enhanced tethered-particle motion analysis reveals viscous effects.
Biophys J. 2014 Jan 21;106(2):399-409. doi: 10.1016/j.bpj.2013.11.4501.
2
Tethered particle motion as a diagnostic of DNA tether length.
J Phys Chem B. 2006 Aug 31;110(34):17260-7. doi: 10.1021/jp0630673.
3
Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule.
Biophys J. 1994 Dec;67(6):2468-78. doi: 10.1016/S0006-3495(94)80735-0.
4
Volume-exclusion effects in tethered-particle experiments: bead size matters.
Phys Rev Lett. 2006 Mar 3;96(8):088306. doi: 10.1103/PhysRevLett.96.088306.
5
Single-particle tracking for DNA tether length monitoring.
Nucleic Acids Res. 2004 May 20;32(9):e73. doi: 10.1093/nar/gnh073.
6
Bead size effects on protein-mediated DNA looping in tethered-particle motion experiments.
Biopolymers. 2011 Feb;95(2):144-50. doi: 10.1002/bip.21547. Epub 2010 Sep 29.
7
Diffusion of latex and DNA chains in 2D confined media.
J Colloid Interface Sci. 2008 Jun 1;322(1):315-20. doi: 10.1016/j.jcis.2008.02.005. Epub 2008 Feb 7.
8
Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy.
Biophys J. 2005 Aug;89(2):1272-81. doi: 10.1529/biophysj.105.061242. Epub 2005 May 27.
9
Mg2+-induced compaction of single RNA molecules monitored by tethered particle microscopy.
Biophys J. 2006 May 15;90(10):3672-85. doi: 10.1529/biophysj.105.067793. Epub 2006 Feb 24.
10
Step length measurement--theory and simulation for tethered bead constant-force single molecule assay.
Biophys J. 2007 Aug 1;93(3):795-805. doi: 10.1529/biophysj.106.097915. Epub 2007 May 11.

引用本文的文献

1
Insights on the effect of macromolecular crowding on transcription and its regulation.
QRB Discov. 2025 Apr 3;6:e16. doi: 10.1017/qrd.2025.8. eCollection 2025.
2
Reciprocating RNA Polymerase batters through roadblocks.
Nat Commun. 2024 Apr 12;15(1):3193. doi: 10.1038/s41467-024-47531-x.
3
Detecting DNA Loops Using Tethered Particle Motion.
Methods Mol Biol. 2024;2694:451-466. doi: 10.1007/978-1-0716-3377-9_21.
4
Positive supercoiling favors transcription elongation through lac repressor-mediated DNA loops.
Nucleic Acids Res. 2022 Mar 21;50(5):2826-2835. doi: 10.1093/nar/gkac093.
5
A Multiplexable Plasmonic Hairpin-DNA Sensor Based On Target-specific Tether Dynamics.
ACS Sens. 2021 Dec 24;6(12):4297-4303. doi: 10.1021/acssensors.1c02097. Epub 2021 Dec 1.
8
Sequence-dependent dynamics of synthetic and endogenous RSSs in V(D)J recombination.
Nucleic Acids Res. 2020 Jul 9;48(12):6726-6739. doi: 10.1093/nar/gkaa418.
9
Tethered multifluorophore motion reveals equilibrium transition kinetics of single DNA double helices.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7512-E7521. doi: 10.1073/pnas.1800585115. Epub 2018 Jul 23.
10
Measurement of Mesoscale Conformational Dynamics of Freely Diffusing Molecules with Tracking FCS.
Biophys J. 2018 Apr 10;114(7):1539-1550. doi: 10.1016/j.bpj.2018.01.044.

本文引用的文献

1
Mesoscale modeling of multi-protein-DNA assemblies: the role of the catabolic activator protein in Lac-repressor-mediated looping.
Int J Non Linear Mech. 2008 Dec;43(10):1082-1093. doi: 10.1016/j.ijnonlinmec.2008.07.003.
2
Dynamical simulations of DNA supercoiling and compression.
Biochem Soc Trans. 2013 Apr;41(2):554-8. doi: 10.1042/BST20120316.
3
Dynamic analysis of a diffusing particle in a trapping potential.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022716. doi: 10.1103/PhysRevE.87.022716. Epub 2013 Feb 25.
4
Interplay of protein and DNA structure revealed in simulations of the lac operon.
PLoS One. 2013;8(2):e56548. doi: 10.1371/journal.pone.0056548. Epub 2013 Feb 14.
5
DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics.
Nucleic Acids Res. 2012 Jun;40(11):4988-97. doi: 10.1093/nar/gks184. Epub 2012 Feb 28.
6
Do monovalent mobile ions affect DNA's flexibility at high salt content?
Phys Chem Chem Phys. 2012 Feb 21;14(7):2250-4. doi: 10.1039/c2cp23499h. Epub 2012 Jan 13.
7
Probing DNA topology using tethered particle motion.
Methods Mol Biol. 2011;783:295-313. doi: 10.1007/978-1-61779-282-3_16.
8
Force-free measurements of the conformations of DNA molecules tethered to a wall.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 1):011916. doi: 10.1103/PhysRevE.83.011916. Epub 2011 Jan 27.
9
Probing DNA conformational changes with high temporal resolution by tethered particle motion.
Phys Biol. 2010 Oct 15;7(4):046003. doi: 10.1088/1478-3975/7/4/046003.
10
Bead size effects on protein-mediated DNA looping in tethered-particle motion experiments.
Biopolymers. 2011 Feb;95(2):144-50. doi: 10.1002/bip.21547. Epub 2010 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验