Suppr超能文献

通过膜锚定和增强暴露提高HIV融合抑制剂C34的疗效

Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure.

作者信息

Augusto Marcelo T, Hollmann Axel, Castanho Miguel A R B, Porotto Matteo, Pessi Antonello, Santos Nuno C

机构信息

Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.

出版信息

J Antimicrob Chemother. 2014 May;69(5):1286-97. doi: 10.1093/jac/dkt529. Epub 2014 Jan 23.

Abstract

OBJECTIVES

The aim of the present work was to evaluate the interaction of two new HIV fusion inhibitors {HIVP3 [C34-polyethylene glycol (PEG)₄-cholesterol] and HIVP4 [(C34-PEG₄)₂-cholesterol]} with membrane model systems and human blood cells in order to clarify where and how the fusion inhibitors locate, allowing us to understand their mechanism of action at the molecular level, and which strategies may be followed to increase efficacy.

METHODS

Lipid vesicles with defined compositions were used for peptide partition and localization studies, based on the intrinsic fluorescence of HIVP3 and HIVP4. Lipid monolayers were employed in surface pressure studies. Finally, human erythrocytes and peripheral blood mononuclear cells (PBMCs) isolated from blood samples were used in dipole potential assays.

RESULTS

Membrane partition, dipole potential and surface pressure assays indicate that the new fusion inhibitors interact preferentially with cholesterol-rich liquid-ordered membranes, mimicking biological membrane microdomains known as lipid rafts. HIVP3 and HIVP4 are able to interact with human erythrocytes and PBMCs to a similar degree as a previously described simpler drug with monomeric C34 and lacking the PEG spacer, C34-cholesterol. However, the pocket-binding domain (PBD) of both HIVP3 and HIVP4 is more exposed to the aqueous environment than in C34-cholesterol.

CONCLUSIONS

The present data allow us to conclude that more efficient blocking of HIV entry results from the synergism between the membranotropic behaviour and the enhanced exposure of the PBD.

摘要

目的

本研究旨在评估两种新型HIV融合抑制剂{HIVP3 [C34 - 聚乙二醇(PEG)₄ - 胆固醇]和HIVP4 [(C34 - PEG₄)₂ - 胆固醇]}与膜模型系统及人类血细胞的相互作用,以阐明融合抑制剂的定位位置及方式,从而使我们能够在分子水平上理解其作用机制,以及可采取哪些策略来提高疗效。

方法

基于HIVP3和HIVP4的固有荧光,使用具有特定组成的脂质囊泡进行肽分配和定位研究。在表面压力研究中采用脂质单层。最后,从血样中分离出的人类红细胞和外周血单核细胞(PBMC)用于偶极电位测定。

结果

膜分配、偶极电位和表面压力测定表明,新型融合抑制剂优先与富含胆固醇的液态有序膜相互作用,模拟了被称为脂筏的生物膜微区。HIVP3和HIVP4与人类红细胞和PBMC相互作用的程度与先前描述的一种更简单的药物C34 - 胆固醇相似,后者具有单体C34且缺乏PEG间隔基团。然而,HIVP3和HIVP4的口袋结合结构域(PBD)比C34 - 胆固醇更暴露于水环境中。

结论

目前的数据使我们能够得出结论,膜趋向性行为与PBD的增强暴露之间的协同作用导致了对HIV进入更有效的阻断。

相似文献

1
Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure.
J Antimicrob Chemother. 2014 May;69(5):1286-97. doi: 10.1093/jac/dkt529. Epub 2014 Jan 23.
3
Combining 25-Hydroxycholesterol with an HIV Fusion Inhibitor Peptide: Interaction with Biomembrane Model Systems and Human Blood Cells.
ACS Infect Dis. 2019 Apr 12;5(4):582-591. doi: 10.1021/acsinfecdis.8b00321. Epub 2019 Feb 28.
6
Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.
Bioorg Med Chem. 2013 Aug 1;21(15):4452-8. doi: 10.1016/j.bmc.2013.05.060. Epub 2013 Jun 5.
7
Decoding distinct membrane interactions of HIV-1 fusion inhibitors using a combined atomic force and fluorescence microscopy approach.
Biochim Biophys Acta. 2013 Aug;1828(8):1777-85. doi: 10.1016/j.bbamem.2013.03.006. Epub 2013 Mar 15.
10
Dimeric C34 Derivatives Linked through Disulfide Bridges as New HIV-1 Fusion Inhibitors.
Chembiochem. 2019 Aug 16;20(16):2101-2108. doi: 10.1002/cbic.201900187. Epub 2019 Jul 4.

引用本文的文献

1
Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection.
Front Cell Infect Microbiol. 2022 May 25;12:880030. doi: 10.3389/fcimb.2022.880030. eCollection 2022.
2
The Importance of Lipid Conjugation on Anti-Fusion Peptides against Nipah Virus.
Biomedicines. 2022 Mar 18;10(3):703. doi: 10.3390/biomedicines10030703.
3
Systematic Evaluation of Fluorination as Modification for Peptide-Based Fusion Inhibitors against HIV-1 Infection.
Chembiochem. 2021 Dec 10;22(24):3443-3451. doi: 10.1002/cbic.202100417. Epub 2021 Oct 22.
4
The pH-sensitive action of cholesterol-conjugated peptide inhibitors of influenza virus.
Biochim Biophys Acta Biomembr. 2021 Dec 1;1863(12):183762. doi: 10.1016/j.bbamem.2021.183762. Epub 2021 Sep 1.
7
GSK3732394: a Multi-specific Inhibitor of HIV Entry.
J Virol. 2019 Sep 30;93(20). doi: 10.1128/JVI.00907-19. Print 2019 Oct 15.

本文引用的文献

1
Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.
Bioorg Med Chem. 2013 Aug 1;21(15):4452-8. doi: 10.1016/j.bmc.2013.05.060. Epub 2013 Jun 5.
3
Synthesized peptide inhibitors of HIV-1 gp41-dependent membrane fusion.
Curr Pharm Des. 2013;19(10):1800-9. doi: 10.2174/1381612811319100004.
4
A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity.
PLoS One. 2012;7(5):e36833. doi: 10.1371/journal.pone.0036833. Epub 2012 May 16.
5
Differential effect of cholesterol and its biosynthetic precursors on membrane dipole potential.
Biophys J. 2012 Apr 4;102(7):1561-9. doi: 10.1016/j.bpj.2012.03.004. Epub 2012 Apr 3.
6
Preclinical evaluation of the HIV-1 fusion inhibitor L'644 as a potential candidate microbicide.
Antimicrob Agents Chemother. 2012 May;56(5):2347-56. doi: 10.1128/AAC.06108-11. Epub 2012 Feb 13.
7
A synthetic C34 trimer of HIV-1 gp41 shows significant increase in inhibition potency.
ChemMedChem. 2012 Feb 6;7(2):205-8. doi: 10.1002/cmdc.201100542. Epub 2012 Jan 13.
8
Designed oligomers of cyanovirin-N show enhanced HIV neutralization.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14079-84. doi: 10.1073/pnas.1108777108. Epub 2011 Jul 28.
9
Anti-HIV-1 antibodies 2F5 and 4E10 interact differently with lipids to bind their epitopes.
AIDS. 2011 Feb 20;25(4):419-28. doi: 10.1097/QAD.0b013e328342ff11.
10
The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide.
Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):270-4. doi: 10.1016/j.bbrc.2010.11.013. Epub 2010 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验