Departments of Physiology and Neurosurgery, University of Tennessee Health Science Center, Memphis, TN 38163.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2361-6. doi: 10.1073/pnas.1317527111. Epub 2014 Jan 24.
Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca(2+) sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.
由孔形成亚基和辅助亚基组成的离子通道几乎控制着所有细胞类型的生理功能。传统观点认为,通道在蛋白复合物正向质膜运输之前与辅助亚基组装。多亚基组成的表面通道在蛋白质合成后是否固定,或者是否灵活并可随时进行快速调节,以控制活性和细胞兴奋性尚不清楚。动脉平滑肌细胞(myocytes)表达大电导钙激活钾(BK)通道α和辅助β1 亚基,它们是动脉收缩性的功能显著调节剂。在这里,我们表明,天然 BKα 亚基主要(约 95%)位于人源和大鼠动脉肌细胞的质膜上。相比之下,只有一小部分(约 10%)的总β1 亚基位于细胞表面。免疫荧光共振能量转移显微镜显示,细胞内β1 亚基储存在 Rab11A 阳性再循环内体中。一氧化氮(NO)通过 cGMP 依赖性蛋白激酶和 cAMP 依赖性途径作用,刺激含有β1 亚基的再循环内体的快速(≤1 分钟)正向转运,使表面β1 增加近三倍。这些β1 亚基与表面驻留的 BKα 蛋白结合,提高了通道的 Ca(2+)敏感性和活性。我们的数据还表明,β1 亚基的快速正向转运是 NO 激活肌细胞 BK 通道并诱导血管舒张的主要机制。总之,我们表明,快速的β1 亚基表面转运控制了动脉肌细胞中功能性 BK 通道的活性和血管收缩性。可以想象,调节辅助亚基转运可能控制各种细胞类型中离子通道的活性。