Suppr超能文献

光学捕获实现生物刺激的高时空分辨率并行递送。

Optical Trapping Enabled Parallel Delivery of Biological Stimuli with High Spatial and Temporal Resolution.

作者信息

Burnham Daniel R, Schneider Thomas, Chiu Daniel T

机构信息

Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700.

出版信息

Proc SPIE Int Soc Opt Eng. 2010 Aug 27;7762:77621T. doi: 10.1117/12.862519.

Abstract

We have developed a method that employs nanocapsules, optical trapping, and single-pulse laser photolysis for delivering bioactive molecules to cells with both high spatial and temporal resolutions. This method is particularly suitable for a cell-culture setting, in which a single nanocapsule can be optically trapped and positioned at a pre-defined location next to the cell, followed by single-pulse laser photolysis to release the contents of the nanocapsule onto the cell. To parallelize this method such that a large array of nanocapsules can be manipulated, positioned, and photolyzed simultaneously, we have turned to the use of spatial light modulators and holographic beam shaping techniques. This paper outlines the progress we have made so far and details the issues we had to address in order to achieve efficient parallel optical manipulations of nanocapsules and particles.

摘要

我们开发了一种方法,该方法利用纳米胶囊、光镊和单脉冲激光光解技术,以高空间和时间分辨率将生物活性分子递送至细胞。此方法特别适用于细胞培养环境,在这种环境中,单个纳米胶囊可通过光镊捕获并定位在细胞旁边的预定义位置,随后通过单脉冲激光光解将纳米胶囊的内容物释放到细胞上。为了使该方法并行化,以便能够同时操纵、定位和光解大量纳米胶囊阵列,我们开始使用空间光调制器和全息光束整形技术。本文概述了我们迄今为止取得的进展,并详细阐述了为实现纳米胶囊和粒子的高效并行光学操纵而必须解决的问题。

相似文献

1
Optical Trapping Enabled Parallel Delivery of Biological Stimuli with High Spatial and Temporal Resolution.
Proc SPIE Int Soc Opt Eng. 2010 Aug 27;7762:77621T. doi: 10.1117/12.862519.
2
Spatially and temporally resolved delivery of stimuli to single cells.
J Am Chem Soc. 2003 Apr 2;125(13):3702-3. doi: 10.1021/ja029942p.
3
Intense femtosecond optical pulse shaping approaches to spatiotemporal control.
Front Chem. 2023 Jan 12;10:1006637. doi: 10.3389/fchem.2022.1006637. eCollection 2022.
4
Positioning Accuracy in Holographic Optical Traps.
Micromachines (Basel). 2021 May 15;12(5):559. doi: 10.3390/mi12050559.
5
Zero-order free holographic optical tweezers.
Opt Express. 2023 Jun 5;31(12):19613-19621. doi: 10.1364/OE.489014.
8
Intracellular delivery of bioactive molecules using light-addressable nanocapsules.
ACS Nano. 2010 Dec 28;4(12):7603-11. doi: 10.1021/nn102345f. Epub 2010 Nov 30.
9
Processing carbon nanotubes with holographic optical tweezers.
Opt Express. 2004 May 3;12(9):1978-81. doi: 10.1364/opex.12.001978.
10
Three-dimensional positioning of optically trapped nanoparticles.
Appl Opt. 2011 Dec 1;50(34):H183-8. doi: 10.1364/AO.50.00H183.

引用本文的文献

1
Self-digitization of samples into a high-density microfluidic bottom-well array.
Anal Chem. 2013 Nov 5;85(21):10417-23. doi: 10.1021/ac402383n. Epub 2013 Oct 7.

本文引用的文献

1
2
Increasing trap stiffness with position clamping in holographic optical tweezers.
Opt Express. 2009 Dec 7;17(25):22718-25. doi: 10.1364/OE.17.022718.
3
Laser photolysis of dye-sensitized nanocapsules occurs via a photothermal pathway.
J Am Chem Soc. 2009 Nov 25;131(46):16771-8. doi: 10.1021/ja904976r.
4
Aberration correction in holographic optical tweezers.
Opt Express. 2006 May 1;14(9):4169-74. doi: 10.1364/oe.14.004169.
5
Spectrally tunable uncaging of biological stimuli from nanocapsules.
Chem Commun (Camb). 2008 Oct 21(39):4795-7. doi: 10.1039/b806685j. Epub 2008 Aug 12.
6
Optimally tuned spatial light modulators for digital holography.
Appl Opt. 2006 Feb 10;45(5):960-7. doi: 10.1364/ao.45.000960.
7
Layered polyelectrolyte-silica coating for nanocapsules.
Langmuir. 2005 Nov 8;21(23):10763-9. doi: 10.1021/la0513297.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验