Suppr超能文献

用于时空控制的强飞秒光脉冲整形方法。

Intense femtosecond optical pulse shaping approaches to spatiotemporal control.

作者信息

Goswami Debabrata

机构信息

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.

Center for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur, India.

出版信息

Front Chem. 2023 Jan 12;10:1006637. doi: 10.3389/fchem.2022.1006637. eCollection 2022.

Abstract

For studying any event, measurement can never be enough; "control" is required. This means mere passive tracking of the event is insufficient and being able to manipulate it is necessary. To maximize this capability to exert control and manipulate, both spatial and temporal domains need to be jointly accounted for, which has remained an intractable problem at microscopic scales. Simultaneous control of dynamics and position of an observable event requires a holistic combination of spatial and temporal control principles, which gives rise to the field of spatiotemporal control. For this, we present a novel femtosecond pulse-shaping approach. We explain how to achieve spatiotemporal control by spatially manipulating the system through trapping and subsequently or simultaneously exerting temporal control using shaped femtosecond pulses. By leveraging ultrafast femtosecond lasers, the prospect of having temporal control of molecular dynamics increases, and it becomes possible to circumvent the relaxation processes at microscopic timescales. Optical trapping is an exemplary demonstration of spatial control that results in the immobilization of microscopic objects with radiation pressure from a tightly focused laser beam. Conventional single-beam optical tweezers use continuous-wave (CW) lasers for achieving spatial control through photon fluxes, but these lack temporal control knobs. We use a femtosecond high repetition rate (HRR) pulsed laser to bypass this lack of dynamical control in the time domain for optical trapping studies. From a technological viewpoint, the high photon flux requirement of stable optical tweezers necessitates femtosecond pulse shaping at HRR, which has been a barrier until the recent Megahertz pulse shaping developments. Finally, recognizing the theoretical distinction between tweezers with femtosecond pulses and CW lasers is of paramount interest. Non-linear optical (NLO) interactions must be included to understand pulsed laser tweezers in areas where they excel, like the two-photon-fluorescence-based detection. We show that our theoretical model can holistically address the common drawback of all tweezers. We are able to mitigate the effects of laser-induced heating by balancing this with femtosecond laser-induced NLO effects. An interesting side-product of HRR femtosecond-laser-induced thermal lens is the development of femtosecond thermal lens spectroscopy (FTLS) and its ability to provide sensitive molecular detection.

摘要

对于研究任何事件而言,测量永远是不够的;还需要“控制”。这意味着仅仅被动跟踪该事件是不够的,能够对其进行操纵是必要的。为了最大限度地发挥这种控制和操纵能力,空间和时间域需要共同考虑,而这在微观尺度上一直是一个棘手的问题。对可观测事件的动力学和位置进行同时控制需要空间和时间控制原理的整体结合,这催生了时空控制领域。为此,我们提出了一种新颖的飞秒脉冲整形方法。我们解释了如何通过捕获在空间上操纵系统,并随后或同时使用整形飞秒脉冲施加时间控制来实现时空控制。通过利用超快飞秒激光,对分子动力学进行时间控制的前景增加了,并且有可能在微观时间尺度上规避弛豫过程。光镊是空间控制的一个典型示例,它利用强聚焦激光束的辐射压力使微观物体固定。传统的单光束光镊使用连续波(CW)激光通过光子通量来实现空间控制,但这些缺乏时间控制旋钮。我们使用飞秒高重复率(HRR)脉冲激光来弥补光镊在时域中缺乏动态控制的问题,以便进行光镊研究。从技术角度来看,稳定光镊对高光子通量的要求使得在高重复率下进行飞秒脉冲整形成为必要,而直到最近兆赫兹脉冲整形技术发展之前,这一直是一个障碍。最后,认识到飞秒脉冲光镊与连续波激光光镊之间的理论区别至关重要。在诸如基于双光子荧光的检测等飞秒脉冲光镊表现出色的领域,必须考虑非线性光学(NLO)相互作用才能理解它们。我们表明,我们的理论模型可以全面解决所有光镊的共同缺点。我们能够通过将飞秒激光诱导的非线性光学效应与之平衡来减轻激光诱导加热的影响。高重复率飞秒激光诱导热透镜的一个有趣副产品是飞秒热透镜光谱学(FTLS)的发展及其提供灵敏分子检测的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52e1/9878401/6ac85b4e11e3/fchem-10-1006637-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验