Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
EMBO J. 2014 Apr 1;33(7):668-85. doi: 10.1002/embj.201386035. Epub 2014 Jan 27.
Children exposed in utero to cannabis present permanent neurobehavioral and cognitive impairments. Psychoactive constituents from Cannabis spp., particularly Δ(9)-tetrahydrocannabinol (THC), bind to cannabinoid receptors in the fetal brain. However, it is unknown whether THC can trigger a cannabinoid receptor-driven molecular cascade to disrupt neuronal specification. Here, we show that repeated THC exposure disrupts endocannabinoid signaling, particularly the temporal dynamics of CB1 cannabinoid receptor, to rewire the fetal cortical circuitry. By interrogating the THC-sensitive neuronal proteome we identify Superior Cervical Ganglion 10 (SCG10)/stathmin-2, a microtubule-binding protein in axons, as a substrate of altered neuronal connectivity. We find SCG10 mRNA and protein reduced in the hippocampus of midgestational human cannabis-exposed fetuses, defining SCG10 as the first cannabis-driven molecular effector in the developing cerebrum. CB1 cannabinoid receptor activation recruits c-Jun N-terminal kinases to phosphorylate SCG10, promoting its rapid degradation in situ in motile axons and microtubule stabilization. Thus, THC enables ectopic formation of filopodia and alters axon morphology. These data highlight the maintenance of cytoskeletal dynamics as a molecular target for cannabis, whose imbalance can limit the computational power of neuronal circuitries in affected offspring.
胎儿在子宫内暴露于大麻会导致永久性的神经行为和认知障碍。大麻属植物中的精神活性成分,特别是Δ(9)-四氢大麻酚(THC),与胎儿大脑中的大麻素受体结合。然而,目前尚不清楚 THC 是否可以引发大麻素受体驱动的分子级联反应,从而破坏神经元的特化。在这里,我们表明,反复接触 THC 会破坏内源性大麻素信号,特别是 CB1 大麻素受体的时间动态,从而重新连接胎儿皮质回路。通过研究 THC 敏感的神经元蛋白质组,我们确定了 Superior Cervical Ganglion 10 (SCG10)/stathmin-2,一种轴突中的微管结合蛋白,是改变神经元连接的底物。我们发现,在妊娠中期人类大麻暴露胎儿的海马体中,SCG10 的 mRNA 和蛋白减少,这定义了 SCG10 是发育中的大脑中第一个受大麻驱动的分子效应物。CB1 大麻素受体的激活募集 c-Jun N 端激酶来磷酸化 SCG10,从而促进其在运动轴突中的原位快速降解和微管稳定。因此,THC 能够使丝状伪足异位形成,并改变轴突形态。这些数据强调了维持细胞骨架动态作为大麻的分子靶标,其失衡可能限制受影响后代的神经元回路的计算能力。