a Department of Biomedical Engineering , Duke University , Durham , North Carolina.
Traffic Inj Prev. 2014;15(4):386-94. doi: 10.1080/15389588.2013.824568.
OBJECTIVE: Traumatic injuries are the leading cause of death of children aged 1-19 in the United States and are principally caused by motor vehicle collisions, with the head being the primary region injured. The neck, though not commonly injured, governs head kinematics and thus influences head injury. Vehicle improvements necessary to reduce these injuries are evaluated using anthropomorphic testing devices (ATDs). Current pediatric ATD head and neck properties were established by scaling adult properties using the size differences between adults and children. Due to the limitations of pediatric biomechanical research, computational models are the only available methods that combine all existing data to produce injury-relevant biofidelity specifications for ATDs. The purpose of this study is to provide the first frontal impact biofidelity corridors for neck flexion response of 6- and 10-year-olds using validated computational models, which are compared to the Hybrid III (HIII) ATD neck responses and the Mertz flexion corridors. METHODS: Our virtual 6- and 10-year-old head and neck multibody models incorporate pediatric biomechanical properties obtained from pediatric cadaveric and radiological studies, include the effect of passive and active musculature, and are validated with data including pediatric volunteer 3 g dynamic frontal impact responses. We simulate ATD pendulum tests-used to calibrate HIII neck bending stiffness-to compare the pediatric model and HIII ATD neck bending stiffness and to compare the model flexion bending responses with the Mertz scaled neck flexion corridors. Additionally, pediatric response corridors for pendulum calibration tests and high-speed (15 g) frontal impacts are estimated through uncertainty analyses on primary model variables, with response corridors calculated from the average ± SD response over 650 simulations. RESULTS AND CONCLUSIONS: The models are less stiff in dynamic anterioposterior bending than the ATDs; the secant stiffness of the 6- and 10-year-old models is 53 and 67 percent less than that of the HIII ATDs. The ATDs exhibit nonlinear stiffening and the models demonstrate nonlinear softening. Consequently, the models do not remain within the Mertz scaled flexion bending corridors. The more compliant model necks suggest an increased potential for head impact via larger head excursions. The pediatric anterioposterior bending corridors developed in this study are extensible to any frontal loading condition through calculation and sensitivity analysis. The corridors presented in this study are the first based on pediatric cadaveric data and provide the basis for future, more biofidelic, designs of 6- and 10-year-old ATD necks.
目的:在美国,1-19 岁儿童的死亡主要原因是创伤,其中主要是由机动车碰撞造成的,头部是主要受伤部位。颈部虽然不易受伤,但它控制着头的运动学,从而影响头部受伤。为了减少这些伤害,需要对车辆进行改进,而这些改进是使用人体模型测试设备(ATD)来评估的。目前的儿科 ATD 头颈部特性是通过使用成人和儿童之间的大小差异来缩放成人特性来确定的。由于儿科生物力学研究的局限性,计算模型是唯一可用的方法,可以结合所有现有数据,为 ATD 产生与损伤相关的生物逼真度规范。本研究的目的是使用经过验证的计算模型为 6 岁和 10 岁儿童的颈部前屈反应提供首个正面碰撞生物逼真度通道,这些模型与 Hybrid III(HIII)ATD 颈部反应和 Mertz 前屈通道进行了比较。
方法:我们的虚拟 6 岁和 10 岁儿童头颈部多体模型采用了从儿科尸体和影像学研究中获得的儿科生物力学特性,包括被动和主动肌肉的影响,并通过包括儿科志愿者 3g 动态正面冲击反应在内的数据进行了验证。我们模拟了 ATD 摆锤测试(用于校准 HIII 颈部弯曲刚度),以比较儿科模型和 HIII ATD 颈部弯曲刚度,并比较模型的前屈弯曲反应与 Mertz 缩放的颈部前屈通道。此外,通过对主要模型变量进行不确定性分析,估计了摆锤校准测试和高速(15g)正面冲击的儿科响应通道,通过对 650 次模拟的平均响应±SD 计算响应通道。
结果和结论:模型在动态前-后弯曲时的刚度小于 ATD;6 岁和 10 岁模型的割线刚度分别比 HIII ATD 低 53%和 67%。ATD 表现出非线性刚度增加,而模型表现出非线性软化。因此,模型不再处于 Mertz 缩放的前屈弯曲通道内。更柔韧的模型颈部表明头部的更大摆动可能会增加头部碰撞的可能性。本研究中开发的儿科前-后弯曲通道可以通过计算和敏感性分析扩展到任何正面加载情况。本研究中提出的通道是基于儿科尸体数据的第一个通道,并为未来更符合生物逼真度的 6 岁和 10 岁儿童 ATD 颈部设计提供了基础。
Traffic Inj Prev. 2013
Traffic Inj Prev. 2014
Traffic Inj Prev. 2014
Traffic Inj Prev. 2016-7-3