Suppr超能文献

用于医疗应用的纳米和微孔海洋结构衍生β-磷酸三钙球的抗生素递送潜力。

Antibiotic delivery potential of nano- and micro-porous marine structure-derived β-tricalcium phosphate spheres for medical applications.

机构信息

School of Medical & Molecular Sciences, University of Technology, Sydney, Australia.

出版信息

Nanomedicine (Lond). 2014;9(8):1131-9. doi: 10.2217/nnm.13.116. Epub 2014 Jan 28.

Abstract

AIMS

This study gives a detailed evaluation of the antibiotic potential of a marine structure-based new drug delivery system produced by hydrothermally converting foraminifera exoskeletons to β-tricalcium phosphate (β-TCP) to treat clinical strain Staphylococcus aureus (MW2).

MATERIALS & METHODS: Foraminifera precursor materials were hydrothermally converted at 250°C for 48 h to produce β-TCP and loaded with gentamicin sulfate by adsorption for 24 h. The physicochemical properties of the material were characterized by scanning electron microscopy, powder x-ray diffraction and for pore size distribution profiles. The antibacterial efficacy of the system was tested for inhibition of S. aureus growth and in vitro cellular behavior were tested with human osteoblast cells (MG63) for cell viability.

DISCUSSION

Pore size distribution profiles showed that the structure allows the uniform distribution of nanopores of 1.5 nm and micropores of approximately 5 µm. The in vitro release profile indicates an initial burst release of 5% of total incorporated gentamicin. A time-delayed antibacterial efficacy test was designed to introduce the bacteria at predetermined time intervals from 0 to 60 min and showed that gentamicin prevents S. aureus grown in the same culture within 30 min, with no evidence of bacterial regrowth within 24 h. Human osteoblast cell (MG63) studies showed no detrimental effect on cell viability.

CONCLUSION

In the light of these results nano- and micro-pores containing β-TCP spheres show promise as potential bone void filler particles with antibacterial effects.

摘要

目的

本研究详细评估了一种基于海洋结构的新型药物输送系统的抗生素潜力,该系统通过将有孔虫外骨骼水热转化为β-磷酸三钙(β-TCP)来生产,用于治疗临床金黄色葡萄球菌(MW2)株。

材料与方法

有孔虫前体材料在 250°C 下水热转化 48 小时以生产β-TCP,并通过吸附 24 小时加载硫酸庆大霉素。采用扫描电子显微镜、粉末 X 射线衍射和孔径分布曲线对材料的物理化学性质进行了表征。通过测试该系统对金黄色葡萄球菌生长的抑制作用来评估其抗菌功效,并通过人成骨肉瘤细胞(MG63)测试其体外细胞行为来评估细胞活力。

讨论

孔径分布曲线表明,该结构允许均匀分布 1.5nm 的纳米孔和大约 5μm 的微孔。体外释放曲线表明,初始时会有 5%的总结合硫酸庆大霉素快速释放。设计了一个时滞抗菌功效测试,在 0 至 60 分钟的预定时间间隔内引入细菌,并表明硫酸庆大霉素可在 30 分钟内阻止同一培养物中的金黄色葡萄球菌生长,在 24 小时内没有细菌再生长的证据。人成骨肉瘤细胞(MG63)研究表明,对细胞活力没有不良影响。

结论

鉴于这些结果,含有纳米和微孔隙的β-TCP 球体能成为具有抗菌效果的潜在骨腔填充颗粒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验