Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg (Germany).
Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2245-9. doi: 10.1002/anie.201309847. Epub 2014 Jan 28.
The growing demands of advanced fluorescence and super-resolution microscopy benefit from the development of small and highly photostable fluorescent probes. Techniques developed to expand the genetic code permit the residue-specific encoding of unnatural amino acids (UAAs) armed with novel clickable chemical handles into proteins in living cells. Here we present the design of new UAAs bearing strained alkene side chains that have improved biocompatibility and stability for the attachment of tetrazine-functionalized organic dyes by the inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC). Furthermore, we fine-tuned the SPIEDAC click reaction to obtain an orthogonal variant for rapid protein labeling which we termed selectivity enhanced (se) SPIEDAC. seSPIEDAC and SPIEDAC were combined for the rapid labeling of live mammalian cells with two different fluorescent probes. We demonstrate the strength of our method by visualizing insulin receptors (IRs) and virus-like particles (VLPs) with dual-color super-resolution microscopy.
不断增长的高级荧光和超分辨率显微镜的需求受益于小而高度光稳定的荧光探针的发展。为了扩展遗传密码而开发的技术允许在活细胞中对带有新型点击化学接头的非天然氨基酸(UAAs)进行残基特异性编码。在这里,我们设计了带有应变烯侧链的新型 UAAs,通过逆电子需求 Diels-Alder 环加成(SPIEDAC),改善了与四嗪功能化有机染料的连接的生物相容性和稳定性。此外,我们对 SPIEDAC 点击反应进行了微调,得到了一种快速蛋白质标记的正交变体,我们称之为选择性增强(se)SPIEDAC。seSPIEDAC 和 SPIEDAC 结合用于用两种不同的荧光探针快速标记活哺乳动物细胞。我们通过用双色超分辨率显微镜可视化胰岛素受体(IRs)和病毒样颗粒(VLPs)来证明我们方法的优势。