Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA; Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Center for Population Biology, University of California, Davis, CA 95616, USA.
Evol Med Public Health. 2013 Jan;2013(1):197-207. doi: 10.1093/emph/eot018. Epub 2013 Sep 11.
A novel form of biological control is being applied to the dengue virus. The agent is the maternally transmitted bacterium Wolbachia, naturally absent from the main dengue vector, the mosquito Aedes aegypti. Three Wolbachia-based control strategies have been proposed. One is suppression of mosquito populations by large-scale releases of males incompatible with native females; this intervention requires ongoing releases. The other interventions transform wild mosquito populations with Wolbachia that spread via the frequency-dependent fitness advantage of Wolbachia-infected females; those interventions potentially require just a single, local release for area-wide disease control. One of these latter strategies uses Wolbachia that shortens mosquito life, indirectly preventing viral maturation/transmission. The other strategy uses Wolbachia that block viral transmission. All interventions can be undermined by viral, bacterial or mosquito evolution; viral virulence in humans may also evolve. We examine existing theory, experiments and comparative evidence to motivate predictions about evolutionary outcomes. (i) The life-shortening strategy seems the most likely to be thwarted by evolution. (ii) Mosquito suppression has a reasonable chance of working locally, at least in the short term, but long-term success over large areas is challenging. (iii) Dengue blocking faces strong selection for viral resistance but may well persist indefinitely at some level. Virulence evolution is not mathematically predictable, but comparative data provide no precedent for Wolbachia increasing dengue virulence. On balance, our analysis suggests that the considerable possible benefits of these technologies outweigh the known negatives, but the actual risk is largely unknown.
一种新型的生物控制方法正在被应用于登革热病毒。这种方法是通过向自然界中不存在的主要登革热媒介——埃及伊蚊——中引入一种名为沃尔巴克氏体的可经母体传播的细菌来实现的。目前已经提出了三种基于沃尔巴克氏体的控制策略。第一种策略是通过大规模释放与本地雌蚊不兼容的雄性蚊子来抑制蚊子种群的增长,这种干预措施需要持续释放。另一种策略是通过具有传播优势的沃尔巴克氏体感染野生蚊子种群来实现,这种优势可以通过雌性的频率依赖性来实现;这些干预措施可能只需要在一个局部地区进行一次释放,就可以实现整个地区的疾病控制。其中一种策略是利用沃尔巴克氏体缩短蚊子的寿命,从而间接阻止病毒的成熟/传播。另一种策略是利用沃尔巴克氏体阻断病毒的传播。所有的干预措施都可能受到病毒、细菌或蚊子进化的影响;人类的病毒毒力也可能进化。我们通过现有的理论、实验和比较证据来预测进化的结果。(i)缩短寿命的策略似乎最有可能受到进化的阻碍。(ii)蚊子抑制在局部地区有一定的成功机会,至少在短期内如此,但在大面积范围内长期成功是具有挑战性的。(iii)阻断登革热病毒的策略面临着强烈的病毒抗性选择,但在一定水平上可能会无限期地持续存在。病毒毒力的进化在数学上是不可预测的,但比较数据并没有为沃尔巴克氏体增加登革热病毒毒力提供先例。总的来说,我们的分析表明,这些技术的潜在好处远远超过了已知的负面影响,但实际风险在很大程度上是未知的。