Suppr超能文献

简化大流行期间的流感疫苗接种:使用异源全灭活流感疫苗进行舌下免疫预刺激和肌肉内加强免疫反应。

Simplifying influenza vaccination during pandemics: sublingual priming and intramuscular boosting of immune responses with heterologous whole inactivated influenza vaccine.

机构信息

Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands,

出版信息

AAPS J. 2014 Mar;16(2):342-9. doi: 10.1208/s12248-014-9565-z. Epub 2014 Jan 31.

Abstract

The best approach to control the spread of influenza virus during a pandemic is vaccination. Yet, an appropriate vaccine is not available early in the pandemic since vaccine production is time consuming. For influenza strains with a high pandemic potential like H5N1, stockpiling of vaccines has been considered but is hampered by rapid antigenic drift of the virus. It has, however, been shown that immunization with a given H5N1 strain can prime the immune system for a later booster with a drifted variant. Here, we investigated whether whole inactivated virus (WIV) vaccine can be processed to tablets suitable for sublingual (s.l.) use and whether s.l. vaccine administration can prime the immune system for a later intramuscular (i.m.) boost with a heterologous vaccine. In vitro results demonstrate that freeze-drying and tableting of WIV did not affect the integrity of the viral proteins or the hemagglutinating properties of the viral particles. Immunization experiments revealed that s.l. priming with WIV (prepared from the H5N1 vaccine strain NIBRG-14) 4 weeks prior to i.m. booster immunization with the same virus strongly enhanced hemagglutination-inhibition (HI) titers against NIBRG-14 and the drifted variant NIBRG-23. Moreover, s.l. (and i.m.) immunization with NIBRG-14 also primed for a subsequent heterologous i.m. booster immunization with NIBRG-23 vaccine. In addition to HI serum antibodies, s.l. priming enhanced lung and nose IgA responses, while i.m. priming enhanced lung IgA but not nose IgA levels. Our results identify s.l. vaccination as a user-friendly method to prime for influenza-specific immune responses toward homologous and drifted variants.

摘要

在大流行期间控制流感病毒传播的最佳方法是接种疫苗。然而,由于疫苗生产耗时,在大流行早期无法获得适当的疫苗。对于像 H5N1 这样具有高大流行潜力的流感株,已经考虑了疫苗储备,但由于病毒的快速抗原漂移而受到阻碍。然而,已经表明,用给定的 H5N1 株进行免疫接种可以为随后用漂移变体进行加强免疫接种启动免疫系统。在这里,我们研究了全灭活病毒 (WIV) 疫苗是否可以加工成适合舌下 (s.l.) 使用的片剂,以及 s.l. 疫苗接种是否可以为随后用异源疫苗进行肌肉内 (i.m.) 加强免疫接种启动免疫系统。体外结果表明,WIV 的冷冻干燥和压片不会影响病毒蛋白的完整性或病毒颗粒的血凝特性。免疫实验表明,s.l. 用 WIV(由 H5N1 疫苗株 NIBRG-14 制备)进行 priming 4 周后,用相同病毒进行 i.m. 加强免疫接种可强烈增强针对 NIBRG-14 和漂移变体 NIBRG-23 的血凝抑制 (HI) 效价。此外,s.l.(和 i.m.)用 NIBRG-14 免疫接种也为随后用 NIBRG-23 疫苗进行异源 i.m. 加强免疫接种做好了准备。除了 HI 血清抗体外,s.l. priming 还增强了肺部和鼻子的 IgA 反应,而 i.m. priming 增强了肺部 IgA 但不增强鼻子 IgA 水平。我们的结果确定 s.l. 疫苗接种是启动针对同源和漂移变体的流感特异性免疫应答的一种用户友好的方法。

相似文献

4
5
Enhanced pulmonary immunization with aerosolized inactivated influenza vaccine containing delta inulin adjuvant.
Eur J Pharm Sci. 2015 Jan 23;66:118-22. doi: 10.1016/j.ejps.2014.10.008. Epub 2014 Oct 20.
9
A prime-boost vaccination of mice with heterologous H5N1 strains.
Vaccine. 2009 May 18;27(23):3121-5. doi: 10.1016/j.vaccine.2009.01.007.

引用本文的文献

2
Development of an Orodispersible Film Containing Stabilized Influenza Vaccine.
Pharmaceutics. 2020 Mar 8;12(3):245. doi: 10.3390/pharmaceutics12030245.
4
Microneedle-Mediated Vaccine Delivery to the Oral Mucosa.
Adv Healthc Mater. 2019 Feb;8(4):e1801180. doi: 10.1002/adhm.201801180. Epub 2018 Dec 10.
5
Mucosal vaccine delivery: Current state and a pediatric perspective.
J Control Release. 2016 Oct 28;240:394-413. doi: 10.1016/j.jconrel.2016.02.014. Epub 2016 Feb 6.
7
Methylglycol chitosan and a synthetic TLR4 agonist enhance immune responses to influenza vaccine administered sublingually.
Vaccine. 2015 Oct 26;33(43):5845-5853. doi: 10.1016/j.vaccine.2015.08.086. Epub 2015 Sep 21.
8
Nanoparticles in vaccine delivery.
AAPS J. 2015 Mar;17(2):289-91. doi: 10.1208/s12248-015-9720-1. Epub 2015 Jan 23.
9
Buccal and sublingual vaccine delivery.
J Control Release. 2014 Sep 28;190:580-92. doi: 10.1016/j.jconrel.2014.05.060. Epub 2014 Jun 6.

本文引用的文献

1
Transmission of influenza A/H5N1 viruses in mammals.
Virus Res. 2013 Dec 5;178(1):15-20. doi: 10.1016/j.virusres.2013.07.017. Epub 2013 Aug 13.
3
Sublingual delivery of vaccines for the induction of mucosal immunity.
Immune Netw. 2013 Jun;13(3):81-5. doi: 10.4110/in.2013.13.3.81. Epub 2013 Jun 30.
4
H5N1 vaccines in humans.
Virus Res. 2013 Dec 5;178(1):78-98. doi: 10.1016/j.virusres.2013.05.006. Epub 2013 May 28.
6
Effect of protein release rates from tablet formulations on the immune response after sublingual immunization.
Eur J Pharm Sci. 2012 Nov 20;47(4):695-700. doi: 10.1016/j.ejps.2012.08.014. Epub 2012 Aug 29.
8
Airborne transmission of influenza A/H5N1 virus between ferrets.
Science. 2012 Jun 22;336(6088):1534-41. doi: 10.1126/science.1213362.
9
The mucosal vaccine quandary: intranasal vs. sublingual immunization against influenza.
Hum Vaccin Immunother. 2012 May;8(5):689-93. doi: 10.4161/hv.19568. Epub 2012 May 1.
10
Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza.
PLoS One. 2011;6(11):e27953. doi: 10.1371/journal.pone.0027953. Epub 2011 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验