Dai Ran, Wilson Daniel J, Geders Todd W, Aldrich Courtney C, Finzel Barry C
Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN 55455 (USA).
Chembiochem. 2014 Mar 3;15(4):575-86. doi: 10.1002/cbic.201300748. Epub 2014 Jan 31.
7,8-Diaminopelargonic acid synthase (BioA) of Mycobacterium tuberculosis is a recently validated target for therapeutic intervention in the treatment of tuberculosis (TB). Using biophysical fragment screening and structural characterization of compounds, we have identified a potent aryl hydrazine inhibitor of BioA that reversibly modifies the pyridoxal-5'-phosphate (PLP) cofactor, forming a stable quinonoid. Analogous hydrazides also form covalent adducts that can be observed crystallographically but are incapable of inactivating the enzyme. In the X-ray crystal structures, small molecules induce unexpected conformational remodeling in the substrate binding site. We compared these conformational changes to those induced upon binding of the substrate (7-keto-8-aminopelargonic acid), and characterized the inhibition kinetics and the X-ray crystal structures of BioA with the hydrazine compound and analogues to unveil the mechanism of this reversible covalent modification.
结核分枝杆菌的7,8-二氨基壬酸合酶(BioA)是最近在结核病(TB)治疗中被验证的治疗干预靶点。通过生物物理片段筛选和化合物的结构表征,我们鉴定出一种有效的BioA芳基肼抑制剂,它可逆地修饰磷酸吡哆醛(PLP)辅因子,形成稳定的醌类化合物。类似的酰肼也形成共价加合物,可通过晶体学观察到,但无法使酶失活。在X射线晶体结构中,小分子在底物结合位点诱导出意想不到的构象重塑。我们将这些构象变化与底物(7-酮-8-氨基壬酸)结合时诱导的变化进行了比较,并表征了BioA与肼化合物及类似物的抑制动力学和X射线晶体结构,以揭示这种可逆共价修饰的机制。