Su Zhi, Zhang Weizhen, Shi Yu, Cui Tao, Xu Yongchang, Yang Runshi, Huang Man, Zhou Chun, Zhang Huimin, Lu Ting, Qu Jiuxin, He Zheng-Guo, Gan Jianhua, Feng Youjun
Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
Sci Adv. 2024 Dec 20;10(51):eadp3954. doi: 10.1126/sciadv.adp3954.
The covalently attached cofactor biotin plays pivotal roles in central metabolism. The top-priority ESKAPE-type pathogens, and , constitute a public health challenge of global concern. Despite the fact that the late step of biotin synthesis is a validated anti-ESKAPE drug target, the primary stage remains fragmentarily understood. We report the functional definition of two BioC isoenzymes (AbBioC for and KpBioC for ) that act as malonyl-ACP methyltransferase and initiate biotin synthesis. The physiological requirement of biotin is diverse within ESKAPE pathogens. CRISPR-Cas9-based inactivation of rendered and biotin auxotrophic. The availability of soluble AbBioC enabled the in vitro reconstitution of DTB/biotin synthesis. We solved two crystal structures of AbBioC bound to SAM cofactor (2.54 angstroms) and sinefungin (SIN) inhibitor (1.72 angstroms). Structural and functional study provided molecular basis for SIN inhibition of BioC. We demonstrated that BioC methyltransferase plays dual roles in infection and colistin resistance.
共价连接的辅因子生物素在中心代谢中起关键作用。最优先的ESKAPE类病原体和构成了全球关注的公共卫生挑战。尽管生物素合成的后期步骤是一个经过验证的抗ESKAPE药物靶点,但初级阶段仍了解甚少。我们报道了两种BioC同工酶(分别为针对的AbBioC和针对的KpBioC)的功能定义,它们作为丙二酰-ACP甲基转移酶并启动生物素合成。ESKAPE病原体中生物素的生理需求各不相同。基于CRISPR-Cas9的失活使和成为生物素营养缺陷型。可溶性AbBioC的可用性使得能够在体外重建DTB/生物素合成。我们解析了与SAM辅因子结合的AbBioC(2.54埃)和与西尼菌素(SIN)抑制剂结合的AbBioC(1.72埃)的两种晶体结构。结构和功能研究为SIN对BioC的抑制提供了分子基础。我们证明BioC甲基转移酶在感染和对粘菌素的抗性中起双重作用。