Hekstra Doeke R, Cocco Simona, Monasson Remi, Leibler Stanislas
Center for Studies in Physics and Biology and the Laboratory of Living Matter, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
School of Natural Sciences, and The Simons Center for Systems Biology, The Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA and Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, 24, Rue Lhomond, 75231 Paris Cedex 05, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062714. doi: 10.1103/PhysRevE.88.062714. Epub 2013 Dec 16.
The dynamical evolution of complex systems is often intrinsically stochastic and subject to external random forces. In order to study the resulting variability in dynamics, it is essential to make measurements on replicate systems and to separate arbitrary variation of the average dynamics of these replicates from fluctuations around the average dynamics. Here we do so for population time-series data from replicate ecosystems sharing a common average dynamics or common trend. We explain how model parameters, including the effective interactions between species and dynamical noise, can be estimated from the data and how replication reduces errors in these estimates. For this, it is essential that the model can fit a variety of average dynamics. We then show how one can judge the quality of a model, compare alternate models, and determine which combinations of parameters are poorly determined by the data. In addition we show how replicate population dynamics experiments could be designed to optimize the acquired information of interest about the systems. Our approach is illustrated on a set of time series gathered from replicate microbial closed ecosystems.
复杂系统的动态演化通常本质上是随机的,并受到外部随机力的影响。为了研究由此产生的动力学变异性,对复制系统进行测量,并将这些复制系统平均动力学的任意变化与平均动力学周围的波动区分开来至关重要。在这里,我们针对具有共同平均动力学或共同趋势的复制生态系统的种群时间序列数据进行了这样的操作。我们解释了如何从数据中估计模型参数,包括物种之间的有效相互作用和动态噪声,以及复制如何减少这些估计中的误差。为此,模型能够拟合各种平均动力学至关重要。然后,我们展示了如何判断模型的质量、比较替代模型,以及确定哪些参数组合由数据确定得不好。此外,我们还展示了如何设计复制种群动力学实验,以优化获取的关于系统的感兴趣信息。我们的方法通过从复制的微生物封闭生态系统收集的一组时间序列进行了说明。