Conrath M, Canfield P J, Bronowicki P M, Dreyer M E, Weislogel M M, Grah A
Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 01, 28359 Bremen, Germany.
Department of Mechanical and Materials Engineering, Portland State University, PO Box 751, Portland, Oregon 97207, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):063009. doi: 10.1103/PhysRevE.88.063009. Epub 2013 Dec 10.
In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.
在轨道航天器近乎失重的环境中,毛细力在超大地质尺度上主导着界面流动现象。在国际空间站目前进行的实验中,正在研究部分开放的通道,以确定临界流速限制条件,超过该条件自由表面会坍塌并吸入气泡。由于没有浮力这种自然的被动相分离特性,这种吸入的气泡反过来会对航天器的流体输送系统造成严重破坏。所研究的流动通道代表了一系列几何形状的管道,可应用于液体推进剂获取、热流体循环以及生命支持用水处理。当前和近期的实验重点关注瞬态现象和管道不对称性,使毛细力能够取代重力的作用来进行被动相分离。文中还提到了需要通过直接液 - 气接触来增强传输的地面应用。