Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, California 94720, USA.
Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, California 94720, USA and Department of Physics, University of California, LeConte Hall, Berkeley, California 94720, USA.
Phys Rev Lett. 2013 Dec 13;111(24):241101. doi: 10.1103/PhysRevLett.111.241101. Epub 2013 Dec 9.
In situ observations of the solar wind frequently show the temperature of α particles (fully ionized helium) Tα to significantly differ from that of protons (ionized hydrogen) Tp. Many heating processes in the plasma act preferentially on α particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the Wind spacecraft's Faraday cups reveal that, at r=1.0 AU from the Sun, the observed values of the α-proton temperature ratio, θαp≡Tα/Tp, has a complex, bimodal distribution. This study applied a simple model for the radial evolution of θαp to these data to compute expected values of θαp at r=0.1 AU. These inferred θαp values have no trace of the bimodality seen in the θαp values measured at r=1.0 AU but are instead consistent with the actions of the known mechanisms for α-particle preferential heating. This result underscores the importance of collisional processes in the dynamics of the solar wind and suggests that similar mechanisms may lead to preferential α-particle heating in both slow and fast wind.
对太阳风的现场观测经常表明,α 粒子(完全电离的氦)的温度 Tα 与质子(电离的氢)Tp 有显著差异。等离子体中的许多加热过程优先作用于α粒子,即使离子之间的碰撞逐渐建立热平衡。来自 Wind 航天器的法拉第杯的测量结果表明,在距太阳 1.0 AU 的 r 处,观测到的α-质子温度比 θαp≡Tα/Tp 具有复杂的双峰分布。本研究应用了一个简单的径向演化模型来处理这些数据,以计算 r=0.1 AU 处的 θαp 的预期值。这些推断出的 θαp 值没有在 r=1.0 AU 处测量的 θαp 值中看到的双峰模式的痕迹,而是与已知的α粒子优先加热机制的作用一致。这一结果强调了碰撞过程在太阳风中的重要性,并表明类似的机制可能导致慢风和快风中的α粒子优先加热。