Kavli Nanoscience Institute and Departments of Physics, Applied Physics, and Bioengineering, California Institute of Technology, Pasadena, California 91125, USA.
School of Chemistry and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
Phys Rev Lett. 2014 Jan 10;112(1):015501. doi: 10.1103/PhysRevLett.112.015501. Epub 2014 Jan 7.
Rarefied gas flows generated by resonating nanomechanical structures pose a significant challenge to theoretical analysis and physical interpretation. The inherent noncontinuum nature of such flows obviates the use of classical theories, such as the Navier-Stokes equations, requiring more sophisticated physical treatments for their characterization. In this Letter, we present a universal dynamic similarity theorem: The quality factor of a nanoscale mechanical resonator at gas pressure P0 is α times that of a scaled-up microscale resonator at a reduced pressure α P0, where α is the ratio of nanoscale and microscale resonator sizes. This holds rigorously for any nanomechanical structure at all degrees of rarefaction, from continuum through to transition and free molecular flows. The theorem is demonstrated for a series of nanomechanical cantilever devices of different size, for which precise universal behavior is observed. This result is of significance for research aimed at probing the fundamental nature of rarefied gas flows and gas-structure interactions at nanometer length scales.
稀薄气体流经共振纳米机械结构会对理论分析和物理诠释造成重大挑战。这些流动具有固有非连续性,无法使用诸如纳维-斯托克斯方程等经典理论进行描述,需要更复杂的物理处理方法来对其进行描述。在这封信件中,我们提出了一个通用的动力相似性定理:在气压 P0 下的纳米机械谐振器的品质因数是在降低的气压 αP0 下的比例为 α 的放大的微尺度谐振器的品质因数的 α 倍,其中 α 是纳米和微尺度谐振器尺寸的比值。对于任何程度的稀薄度下的任何纳米机械结构,从连续过渡到过渡和自由分子流,该定理都严格成立。该定理通过一系列不同尺寸的纳米机械悬臂装置得到了证明,观察到了精确的普适行为。这一结果对于旨在探测稀薄气体流动和纳米尺度下气体-结构相互作用的基本性质的研究具有重要意义。