Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt.
Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
Transl Res. 2014 Jul;164(1):46-56. doi: 10.1016/j.trsl.2014.01.006. Epub 2014 Jan 10.
Mycophenolic acid (MPA) is an immunosuppressant used in transplant rejection, often in combination with cyclosporine (CsA) and tacrolimus (Tac). The drug is cleared predominantly via the kidneys, and 95% of the administered dose appears in urine as 7-hydroxy mycophenolic acid glucuronide (MPAG). The current study was designed to unravel the renal excretory pathway of MPA and MPAG, and their potential drug-drug interactions. The role of multidrug resistance protein (MRP) 2 and MRP4 in MPA disposition was studied using human embryonic kidney 293 (HEK293) cells overexpressing the human transporters, and in isolated, perfused kidneys of Mrp2-deficient rats and Mrp4-deficient mice. Using these models, we identified MPA as substrate of MRP2 and MRP4, whereas its MPAG appeared to be a substrate of MRP2 only. CsA inhibited MPAG transport via MRP2 for 50% at 8 μM (P < 0.05), whereas Tac had no effect. This was confirmed by cell survival assays, showing a 10-fold increase in MPA cytotoxicity (50% reduction in cell survival changed from 12.2 ± 0.3 μM to 1.33 ± 0.01 μM by MPA + CsA; P < 0.001) and in perfused kidneys, showing a 50% reduction in MPAG excretion (P < 0.05). The latter effect was observed in Mrp2-deficient animals as well, supporting the importance of Mrp2 in MPAG excretion. CsA, but not Tac, inhibited MPA glucuronidation by rat kidney homogenate and human uridine 5'-diphospho-glucuronosyltransferase-glucuronosyltransferase 1A9 (P < 0.05 and P < 0.01, respectively). We conclude that MPA is a substrate of both MRP2 and MRP4, but MRP2 is the main transporter involved in renal MPAG excretion. In conclusion, CsA, but not Tac, influences MPA clearance by inhibiting renal MPA glucuronidation and MRP2-mediated MPAG secretion.
霉酚酸(MPA)是一种用于移植排斥反应的免疫抑制剂,常与环孢素(CsA)和他克莫司(Tac)联合使用。该药物主要通过肾脏清除,95%的给药剂量以 7-羟基霉酚酸葡萄糖醛酸酯(MPAG)的形式出现在尿液中。本研究旨在阐明 MPA 和 MPAG 的肾脏排泄途径及其潜在的药物相互作用。使用人胚肾 293(HEK293)细胞过表达人转运蛋白,以及在 Mrp2 缺陷型大鼠和 Mrp4 缺陷型小鼠的分离灌注肾脏中,研究了多药耐药蛋白(MRP)2 和 MRP4 在 MPA 处置中的作用。使用这些模型,我们确定 MPA 是 MRP2 和 MRP4 的底物,而其 MPAG 似乎仅为 MRP2 的底物。CsA 在 8 μM 时对 MPAG 转运的抑制作用为 50%(P < 0.05),而 Tac 则没有影响。细胞存活测定证实了这一点,显示 MPA 细胞毒性增加了 10 倍(细胞存活率从 12.2 ± 0.3 μM 降低至 1.33 ± 0.01 μM 时,MPA + CsA 的变化;P < 0.001),在灌注肾脏中,MPAG 排泄减少了 50%(P < 0.05)。在 Mrp2 缺陷型动物中也观察到了这种效应,这支持了 Mrp2 在 MPAG 排泄中的重要性。CsA 但不是 Tac,抑制了大鼠肾匀浆和人尿苷 5'-二磷酸葡萄糖醛酸基转移酶-葡萄糖醛酸基转移酶 1A9(P < 0.05 和 P < 0.01)对 MPA 的葡萄糖醛酸化作用。我们得出结论,MPA 是 MRP2 和 MRP4 的底物,但 MRP2 是参与肾脏 MPAG 排泄的主要转运体。总之,CsA 但不是 Tac,通过抑制肾脏 MPA 葡萄糖醛酸化和 MRP2 介导的 MPAG 分泌来影响 MPA 的清除率。