Takehara Shoko, Schulz Thomas C, Abe Satoshi, Takiguchi Masato, Kazuki Kanako, Kishigami Satoshi, Wakayama Teruhiko, Tomizuka Kazuma, Oshimura Mitsuo, Kazuki Yasuhiro
Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
Transgenic Res. 2014 Jun;23(3):441-53. doi: 10.1007/s11248-014-9781-4. Epub 2014 Feb 2.
Transchromosomic (Tc) technology using human chromosome fragments (hCFs), or human artificial chromosomes (HACs), has been used for generating mice containing Mb-sized segments of the human genome. The most significant problem with freely segregating chromosomes with human centromeres has been mosaicism, possibly due to the instability of hCFs or HACs in mice. We report a system for the stable maintenance of Mb-sized human chromosomal fragments following translocation to mouse chromosome 10 (mChr.10). The approach utilizes microcell-mediated chromosome transfer and a combination of site-specific loxP insertion, telomere-directed chromosome truncation, and precise reciprocal translocation for the generation of Tc mice. Human chromosome 21 (hChr.21) was modified with a loxP site and truncated in homologous recombination-proficient chicken DT40 cells. Following transfer to mouse embryonic stem cells harboring a loxP site at the distal region of mChr.10, a ~4 Mb segment of hChr.21 was translocated to the distal region of mChr.10 by transient expression of Cre recombinase. The residual hChr.21/mChr.10ter fragment was reduced by antibiotic negative selection. Tc mice harboring the translocated ~4 Mb fragment were generated by chimera formation and germ line transmission. The hChr.21-derived Mb fragment was maintained stably in tissues in vivo and expression profiles of genes on hChr.21 were consistent with those seen in humans. Thus, Tc technology that enables translocation of human chromosomal regions onto host mouse chromosomes will be useful for studying in vivo functions of the human genome, and generating humanized model mice.
利用人类染色体片段(hCFs)或人类人工染色体(HACs)的转染色体(Tc)技术已被用于培育含有人类基因组中兆碱基大小片段的小鼠。带有人类着丝粒的自由分离染色体最显著的问题是嵌合现象,这可能是由于hCFs或HACs在小鼠体内的不稳定性所致。我们报告了一种将兆碱基大小的人类染色体片段易位到小鼠10号染色体(mChr.10)后进行稳定维持的系统。该方法利用微细胞介导的染色体转移以及位点特异性loxP插入、端粒导向的染色体截断和精确的相互易位相结合来生成Tc小鼠。人类21号染色体(hChr.21)在同源重组能力强的鸡DT40细胞中用loxP位点进行修饰并截断。在转移到mChr.10远端区域带有loxP位点的小鼠胚胎干细胞后,通过Cre重组酶的瞬时表达将约4兆碱基的hChr.21片段易位到mChr.10的远端区域。通过抗生素阴性选择减少残留的hChr.21/mChr.10ter片段。通过嵌合体形成和种系传递培育出携带易位的约4兆碱基片段的Tc小鼠。源自hChr.21的兆碱基片段在体内组织中稳定维持,hChr.21上基因的表达谱与人类中的一致。因此,能够将人类染色体区域易位到宿主小鼠染色体上的Tc技术将有助于研究人类基因组的体内功能,并生成人源化模型小鼠。