Suppr超能文献

New modes of data partitioning based on PARS peak alignment for improved multivariate biomarker/biopattern detection in H-NMR spectroscopic metabolic profiling of urine.

作者信息

Torgrip R J O, Lindberg J, Linder M, Karlberg B, Jacobsson S P, Kolmert J, Gustafsson I, Schuppe-Koistinen I

机构信息

Department of Analytical Chemistry, BioSysteMetrics Group, Stockholm University, SE-106 91 Stockholm, Sweden ; Safety Assessment, Molecular Toxicology, AstraZeneca R&D Södertälje, SE-151 85 Södertälje, Sweden.

Safety Assessment, Molecular Toxicology, AstraZeneca R&D Södertälje, SE-151 85 Södertälje, Sweden.

出版信息

Metabolomics. 2006;2(1):1-19. doi: 10.1007/s11306-005-0013-z. Epub 2006 Apr 8.

Abstract

This paper addresses the possibility of mathematically partition and process urine H-NMR spectra to enhance the efficiency of the subsequent multivariate data analysis in the context of metabolic profiling of a toxicity study. We show that by processing the NMR data with the peak alignment using reduced set mapping (PARS) algorithm and the use of sparse representation of the data results in the information contained in the original NMR data being preserved with retained resolution but free of the problem of peak shifts. We can now describe a method for differential expression analysis of NMR spectra by using prior knowledge, ., the onset of dosing, a partitioning not possible to achieve using raw or bucketed data. In addition we also outline a scheme for soft removal of "biological noise" from the aligned data: exhaustive bio-noise subtraction (EBS). The result is a straightforward protocol for detection of peaks that appear as a consequence of the drug response. In other words, it is possible to elucidate peak origin, either from endogenous substances from the administered drug/biomarkers. The partition of data originating from the normally regulating metabolome can, furthermore, be analyzed free of the superimposed biological noise. The proposed protocol results in enhanced interpretability of the processed data, ., a more refined metabolic trace, simplification of detection of consistent biomarkers, and a simplified search for metabolic end products of the administered drug.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eb3/3906737/cb2752d1e8d0/11306_2005_13_Fig1_HTML.jpg

相似文献

5
Proof of principle of a generalized fuzzy Hough transform approach to peak alignment of one-dimensional 1H NMR data.
Anal Bioanal Chem. 2007 Oct;389(3):875-85. doi: 10.1007/s00216-007-1475-9. Epub 2007 Aug 16.
6
2D NMR metabonomic analysis: a novel method for automated peak alignment.
Bioinformatics. 2007 Nov 1;23(21):2926-33. doi: 10.1093/bioinformatics/btm427. Epub 2007 Sep 10.
7
Metabolite Profiling of Clinical Cancer Biofluid Samples by NMR Spectroscopy.
Methods Mol Biol. 2019;1928:251-274. doi: 10.1007/978-1-4939-9027-6_14.
8
A comparison of methods for alignment of NMR peaks in the context of cluster analysis.
J Pharm Biomed Anal. 2005 Aug 10;38(5):824-32. doi: 10.1016/j.jpba.2005.01.042. Epub 2005 Apr 2.
10
Peak alignment of urine NMR spectra using fuzzy warping.
J Chem Inf Model. 2006 Mar-Apr;46(2):863-75. doi: 10.1021/ci050316w.

引用本文的文献

1
Automated annotation and quantification of metabolites in 1H NMR data of biological origin.
Anal Bioanal Chem. 2012 Apr;403(2):443-55. doi: 10.1007/s00216-012-5789-x. Epub 2012 Feb 24.
2
A solution to the 1D NMR alignment problem using an extended generalized fuzzy Hough transform and mode support.
Anal Bioanal Chem. 2009 Sep;395(1):213-23. doi: 10.1007/s00216-009-2940-4. Epub 2009 Jul 22.

本文引用的文献

1
A comparison of methods for alignment of NMR peaks in the context of cluster analysis.
J Pharm Biomed Anal. 2005 Aug 10;38(5):824-32. doi: 10.1016/j.jpba.2005.01.042. Epub 2005 Apr 2.
6
Automatic reduction of NMR spectroscopic data for statistical and pattern recognition classification of samples.
J Pharm Biomed Anal. 1994 Oct;12(10):1215-25. doi: 10.1016/0731-7085(94)00073-5.
7
Ethionine fatty liver.
Adv Lipid Res. 1967;5:119-83.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验