IEEE Trans Image Process. 2014 Jan;23(1):445-9. doi: 10.1109/tip.2013.2293428.
This paper presents a new lossless color image compression algorithm, based on the hierarchical prediction and context-adaptive arithmetic coding. For the lossless compression of an RGB image, it is first decorrelated by a reversible color transform and then Y component is encoded by a conventional lossless grayscale image compression method. For encoding the chrominance images, we develop a hierarchical scheme that enables the use of upper, left, and lower pixels for the pixel prediction, whereas the conventional raster scan prediction methods use upper and left pixels. An appropriate context model for the prediction error is also defined and the arithmetic coding is applied to the error signal corresponding to each context. For several sets of images, it is shown that the proposed method further reduces the bit rates compared with JPEG2000 and JPEG-XR.
本文提出了一种新的无损彩色图像压缩算法,基于分层预测和上下文自适应算术编码。对于 RGB 图像的无损压缩,首先通过可逆颜色变换去相关,然后使用传统的无损灰度图像压缩方法对 Y 分量进行编码。对于色度图像的编码,我们开发了一种分层方案,允许使用上、左和下像素进行像素预测,而传统的光栅扫描预测方法仅使用上和左像素。还定义了用于预测误差的适当上下文模型,并将算术编码应用于每个上下文的误差信号。对于几组图像,与 JPEG2000 和 JPEG-XR 相比,所提出的方法进一步降低了比特率。