Suppr超能文献

从自发报告数据库估算药物不良反应的发病时间。

Estimating time-to-onset of adverse drug reactions from spontaneous reporting databases.

机构信息

Inserm, CESP Centre for research in Epidemiology and Population Health, U1018, Biostatistics Team, F-94807 Villejuif, France.

出版信息

BMC Med Res Methodol. 2014 Feb 3;14:17. doi: 10.1186/1471-2288-14-17.

Abstract

BACKGROUND

Analyzing time-to-onset of adverse drug reactions from treatment exposure contributes to meeting pharmacovigilance objectives, i.e. identification and prevention. Post-marketing data are available from reporting systems. Times-to-onset from such databases are right-truncated because some patients who were exposed to the drug and who will eventually develop the adverse drug reaction may do it after the time of analysis and thus are not included in the data. Acknowledgment of the developments adapted to right-truncated data is not widespread and these methods have never been used in pharmacovigilance. We assess the use of appropriate methods as well as the consequences of not taking right truncation into account (naive approach) on parametric maximum likelihood estimation of time-to-onset distribution.

METHODS

Both approaches, naive or taking right truncation into account, were compared with a simulation study. We used twelve scenarios for the exponential distribution and twenty-four for the Weibull and log-logistic distributions. These scenarios are defined by a set of parameters: the parameters of the time-to-onset distribution, the probability of this distribution falling within an observable values interval and the sample size. An application to reported lymphoma after anti TNF- α treatment from the French pharmacovigilance is presented.

RESULTS

The simulation study shows that the bias and the mean squared error might in some instances be unacceptably large when right truncation is not considered while the truncation-based estimator shows always better and often satisfactory performances and the gap may be large. For the real dataset, the estimated expected time-to-onset leads to a minimum difference of 58 weeks between both approaches, which is not negligible. This difference is obtained for the Weibull model, under which the estimated probability of this distribution falling within an observable values interval is not far from 1.

CONCLUSIONS

It is necessary to take right truncation into account for estimating time-to-onset of adverse drug reactions from spontaneous reporting databases.

摘要

背景

分析药物暴露后不良反应的发病时间有助于实现药物警戒目标,即识别和预防。上市后数据可从报告系统获得。由于一些暴露于药物并最终发生不良反应的患者可能在分析时间之后发生这种情况,因此不在数据中,因此来自此类数据库的发病时间是右截断的。对右截断数据的适应性认识尚未广泛普及,这些方法从未在药物警戒中使用过。我们评估了适当方法的使用以及不考虑右截断(幼稚方法)对发病时间分布参数最大似然估计的后果。

方法

我们使用模拟研究比较了幼稚方法和考虑右截断的方法。我们使用了十二种指数分布和二十四种威布尔分布和对数逻辑分布的情况。这些情况是通过一组参数定义的:发病时间分布的参数、该分布落在可观察值区间内的概率和样本量。展示了来自法国药物警戒的抗 TNF-α 治疗后报告的淋巴瘤的应用。

结果

模拟研究表明,在不考虑右截断的情况下,有时会出现不可接受的大偏差和均方误差,而基于截断的估计量始终表现出更好且常常令人满意的性能,并且差距可能很大。对于真实数据集,估计的预期发病时间导致两种方法之间的最小差异为 58 周,这不容忽视。这种差异是在威布尔模型下获得的,在该模型下,该分布落在可观察值区间内的估计概率接近 1。

结论

有必要从自发报告数据库中考虑右截断来估计药物不良反应的发病时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4727/3923259/5eb50caf7e50/1471-2288-14-17-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验