Suppr超能文献

用于灵活手术机器人的人机技能转移接口。

Human-robot skills transfer interfaces for a flexible surgical robot.

作者信息

Calinon Sylvain, Bruno Danilo, Malekzadeh Milad S, Nanayakkara Thrishantha, Caldwell Darwin G

机构信息

Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy.

Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy.

出版信息

Comput Methods Programs Biomed. 2014 Sep;116(2):81-96. doi: 10.1016/j.cmpb.2013.12.015. Epub 2014 Jan 8.

Abstract

In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator.

摘要

在微创手术中,工具通过狭窄的开口进入并操纵柔软的器官以执行手术任务。由于机器人工具的刚性,当前的机器人辅助手术系统存在局限性。欧洲的STIFF-FLOP项目旨在开发一种用于执行手术任务的柔性机器人手臂。该机器人的灵活性使外科医生能够在器官内移动,到达身体内部的偏远区域,并在腹腔镜手术中执行具有挑战性的手术。本文探讨了设计学习界面以实现从人类示范中转移技能的问题。通过示范进行机器人编程涵盖了广泛的学习策略,从简单模仿示范者的动作到更高层次地模仿从示范中提取的潜在意图。通过关注最后这种形式,我们研究了从一组过度指定的候选奖励函数中提取解释示范的目标函数,并将此信息用于技能的自我完善的问题。与试图用为整个任务定义的奖励函数(或为任务的不同部分激活的一组预定义奖励配置文件)来解释观察结果的逆强化学习策略不同,所提出的方法基于上下文相关的奖励加权学习,其中机器人可以了解候选目标函数相对于任务的当前阶段或遇到的情况的相关性。然后,机器人在策略参数空间中利用此信息进行技能优化。所提出的方法在模拟中进行了测试,使用了来自巴雷特WAM操纵器的动觉示范,由STIFF-FLOP柔性机器人执行切割任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验