Gonon-Demoulian R, Goldman J M, Nicolini F E
Faculté de médecine Lyon-Est, Université Claude-Bernard Lyon 1, 8, Avenue Rockfeller 69373 Lyon cedex 08, France.
Department of Haematology, Imperial College at Hammersmith Hospital, Du Cane road, London, W12 0NN, United Kingdom, European Leukemia Net (ELN), III. Medizinische Universitätsklinik, Medizinische Fakultät Mannheim, der Ruprecht-Karls-Universität, Heidelberg, Pettenkoferstr. 22, D-68169 Mannheim, Allemagne.
Bull Cancer. 2014 Jan 1;101(1):56-67. doi: 10.1684/bdc.2013.1876.
During two centuries, advances in medicine and medical research have helped to understand the pathophysiology of chronic myelogenous leukemia (CML). This hematologic malignancy is a unique model of oncogenesis where a single molecular hit, causing cell proliferation and survival, was identified. The chromosomal abnormality first highlighted by P. Nowell and D. Hungerford in 1960, and characterized as the reciprocal translocation t(9;22)(q34;q11), the Philadelphia chromosome, discovered in leukemic cells, by J. Rowley in 1973. At the end of the 20th century, the contribution of molecular biology techniques was crucial by the discovery of the BCR-ABL1 hybrid oncogene derived from the t(9;22), responsible for the translation of an aberrant protein tyrosine kinase. This BCR-ABL1 kinase deregulates signaling pathways that control normal cell cycle and survival in primitive hematopoietic cells and is thus responsible for malignant cell accumulation observed in CML. It was then only necessary to develop a targeted treatment adapted to this molecular hit. Recently, tyrosine kinase inhibitors, by their specific inhibitory activity of BCR-ABL, have revolutionized the treatment of CML, allowing rates of haematological, cytogenetic and molecular responses never seen to date, and has significantly improved the overall survival and the quality of life of patients.
在两个世纪的时间里,医学和医学研究的进展有助于人们了解慢性粒细胞白血病(CML)的病理生理学。这种血液系统恶性肿瘤是肿瘤发生的一个独特模型,其中确定了一个单一的分子靶点,该靶点可导致细胞增殖和存活。1960年,P. 诺埃尔和D. 亨格福德首次发现了这种染色体异常,并将其特征描述为相互易位t(9;22)(q34;q11),即费城染色体;1973年,J. 罗利在白血病细胞中发现了该染色体。在20世纪末,分子生物学技术的贡献至关重要,因为发现了源自t(9;22)的BCR-ABL1融合癌基因,该基因负责翻译一种异常的蛋白酪氨酸激酶。这种BCR-ABL1激酶会使控制原始造血细胞正常细胞周期和存活的信号通路失调,从而导致CML中观察到的恶性细胞积累。随后,只需要开发一种针对这种分子靶点的靶向治疗方法。最近,酪氨酸激酶抑制剂凭借其对BCR-ABL的特异性抑制活性,彻底改变了CML的治疗方式,实现了前所未有的血液学、细胞遗传学和分子反应率,并显著提高了患者的总体生存率和生活质量。