Suppr超能文献

通过活细胞成像揭示的抗菌肽LL-37和CATH-2的杀菌机制

Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging.

作者信息

Ordonez Soledad R, Amarullah Ilham H, Wubbolts Richard W, Veldhuizen Edwin J A, Haagsman Henk P

机构信息

Department of Infectious Diseases and Immunology, Division Molecular Host Defense, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

出版信息

Antimicrob Agents Chemother. 2014;58(4):2240-8. doi: 10.1128/AAC.01670-13. Epub 2014 Feb 3.

Abstract

Antifungal mechanisms of action of two cathelicidins, chicken CATH-2 and human LL-37, were studied and compared with the mode of action of the salivary peptide histatin 5 (Hst5). Candida albicans was used as a model organism for fungal pathogens. Analysis by live-cell imaging showed that the peptides kill C. albicans rapidly. CATH-2 is the most active peptide and kills C. albicans within 5 min. Both cathelicidins induce cell membrane permeabilization and simultaneous vacuolar expansion. Minimal fungicidal concentrations (MFC) are in the same order of magnitude for all three peptides, but the mechanisms of antifungal activity are very different. The activity of cathelicidins is independent of the energy status of the fungal cell, unlike Hst5 activity. Live-cell imaging using fluorescently labeled peptides showed that both CATH-2 and LL-37 quickly localize to the C. albicans cell membrane, while Hst5 was mainly directed to the fungal vacuole. Small amounts of cathelicidins internalize at sub-MFCs, suggesting that intracellular activities of the peptide could contribute to the antifungal activity. Analysis by flow cytometry indicated that CATH-2 significantly decreases C. albicans cell size. Finally, electron microscopy showed that CATH-2 affects the integrity of the cell membrane and nuclear envelope. It is concluded that the general mechanisms of action of both cathelicidins are partially similar (but very different from that of Hst5). CATH-2 has unique features and possesses antifungal potential superior to that of LL-37.

摘要

研究了两种cathelicidin(鸡CATH-2和人LL-37)的抗真菌作用机制,并与唾液肽组蛋白5(Hst5)的作用模式进行了比较。白色念珠菌被用作真菌病原体的模式生物。活细胞成像分析表明,这些肽能迅速杀死白色念珠菌。CATH-2是活性最强的肽,能在5分钟内杀死白色念珠菌。两种cathelicidin都能诱导细胞膜通透性增加并同时使液泡扩张。所有三种肽的最低杀菌浓度(MFC)处于同一数量级,但抗真菌活性机制非常不同。与Hst5的活性不同,cathelicidin的活性与真菌细胞的能量状态无关。使用荧光标记肽的活细胞成像显示,CATH-2和LL-37都能迅速定位于白色念珠菌细胞膜,而Hst5主要定位于真菌液泡。少量cathelicidin在低于MFC的浓度下内化,这表明该肽的细胞内活性可能有助于抗真菌活性。流式细胞术分析表明,CATH-2显著减小白色念珠菌的细胞大小。最后,电子显微镜显示CATH-2影响细胞膜和核膜的完整性。得出的结论是,两种cathelicidin的一般作用机制部分相似(但与Hst5非常不同)。CATH-2具有独特的特性,其抗真菌潜力优于LL-37。

相似文献

1
Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging.
Antimicrob Agents Chemother. 2014;58(4):2240-8. doi: 10.1128/AAC.01670-13. Epub 2014 Feb 3.
2
Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection.
J Invest Dermatol. 2005 Jul;125(1):108-15. doi: 10.1111/j.0022-202X.2005.23713.x.
3
Assessing the potential of four cathelicidins for the management of mouse candidiasis and Candida albicans biofilms.
Biochimie. 2016 Feb;121:268-77. doi: 10.1016/j.biochi.2015.11.028. Epub 2015 Dec 2.
4
A heptadeca amino acid peptide subunit of cathelicidin LL-37 has previously unreported antifungal activity.
APMIS. 2023 Nov;131(11):584-600. doi: 10.1111/apm.13322. Epub 2023 May 7.
5
Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts.
J Antimicrob Chemother. 2006 Nov;58(5):950-9. doi: 10.1093/jac/dkl382. Epub 2006 Oct 5.
6
Responses of Candida albicans to the human antimicrobial peptide LL-37.
J Microbiol. 2014 Jul;52(7):581-9. doi: 10.1007/s12275-014-3630-2. Epub 2014 May 30.
8
Fungicidal effect of three new synthetic cationic peptides against Candida albicans.
Oral Dis. 2004 Jul;10(4):221-8. doi: 10.1111/j.1601-0825.2004.01010.x.
10
Phytosphingosine kills Candida albicans by disrupting its cell membrane.
Biol Chem. 2010 Jan;391(1):65-71. doi: 10.1515/BC.2010.001.

引用本文的文献

1
Solid-State NMR Reveals Reorganization of the Aspergillus fumigatus Cell Wall Due to a Host-Defence Peptide.
Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202509012. doi: 10.1002/anie.202509012. Epub 2025 Jul 16.
2
The Contribution of Human Antimicrobial Peptides to Fungi.
Int J Mol Sci. 2025 Mar 11;26(6):2494. doi: 10.3390/ijms26062494.
3
Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation.
Antibiotics (Basel). 2024 Dec 24;14(1):1. doi: 10.3390/antibiotics14010001.
5
A synthetic peptide mimic kills Candida albicans and synergistically prevents infection.
Nat Commun. 2024 Aug 9;15(1):6818. doi: 10.1038/s41467-024-50491-x.
6
Antifungal properties of cathelicidin LL-37: current knowledge and future research directions.
World J Microbiol Biotechnol. 2023 Dec 7;40(1):34. doi: 10.1007/s11274-023-03852-5.
7
Modulation of innate immunity in airway epithelium for host-directed therapy.
Front Immunol. 2023 May 12;14:1197908. doi: 10.3389/fimmu.2023.1197908. eCollection 2023.
8
Immunomodulatory Properties of Vitamin D in the Intestinal and Respiratory Systems.
Nutrients. 2023 Mar 30;15(7):1696. doi: 10.3390/nu15071696.
10
Regulation of LL-37 in Bone and Periodontium Regeneration.
Life (Basel). 2022 Sep 30;12(10):1533. doi: 10.3390/life12101533.

本文引用的文献

1
Avian host defense peptides.
Dev Comp Immunol. 2013 Nov;41(3):352-69. doi: 10.1016/j.dci.2013.04.019. Epub 2013 May 3.
2
Chicken cathelicidins display antimicrobial activity against multiresistant bacteria without inducing strong resistance.
PLoS One. 2013 Apr 22;8(4):e61964. doi: 10.1371/journal.pone.0061964. Print 2013.
3
Real-time attack of LL-37 on single Bacillus subtilis cells.
Biochim Biophys Acta. 2013 Jun;1828(6):1511-20. doi: 10.1016/j.bbamem.2013.02.011. Epub 2013 Feb 26.
4
Fully hydrated yeast cells imaged with electron microscopy.
Biophys J. 2011 May 18;100(10):2522-9. doi: 10.1016/j.bpj.2011.03.045.
5
Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37.
Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):E77-81. doi: 10.1073/pnas.1101130108. Epub 2011 Apr 4.
6
A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms.
Int J Antimicrob Agents. 2011 May;37(5):476-9. doi: 10.1016/j.ijantimicag.2010.12.020. Epub 2011 Mar 3.
7
Screening for antifungal peptides and their modes of action in Aspergillus nidulans.
Appl Environ Microbiol. 2010 Nov;76(21):7102-8. doi: 10.1128/AEM.01560-10. Epub 2010 Sep 10.
8
Salivary histatin 5 internalization by translocation, but not endocytosis, is required for fungicidal activity in Candida albicans.
Mol Microbiol. 2010 Jul;77(2):354-70. doi: 10.1111/j.1365-2958.2010.07210.x. Epub 2010 May 12.
9
Identification of chicken cathelicidin-2 core elements involved in antibacterial and immunomodulatory activities.
Mol Immunol. 2009 Aug;46(13):2465-73. doi: 10.1016/j.molimm.2009.05.019. Epub 2009 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验