Inserm, U862, Neurocentre Magendie, Université de Bordeaux, 146 Rue Léo-Saignat, F-33077 Bordeaux, France.
J Physiol. 2014 Apr 1;592(7):1637-54. doi: 10.1113/jphysiol.2013.261008. Epub 2014 Feb 3.
Vasopressin secretion from the magnocellular neurosecretory cells (MNCs) is crucial for body fluid homeostasis. Osmotic regulation of MNC activity involves the concerted modulation of intrinsic mechanosensitive ion channels, taurine release from local astrocytes as well as excitatory inputs derived from osmosensitive forebrain regions. Extracellular signal-regulated protein kinases (ERK) are mitogen-activated protein kinases that transduce extracellular stimuli into intracellular post-translational and transcriptional responses, leading to changes in intrinsic neuronal properties and synaptic function. Here, we investigated whether ERK activation (i.e. phosphorylation) plays a role in the functioning of forebrain osmoregulatory networks. We found that within 10 min after intraperitoneal injections of hypertonic saline (3 m, 6 m) in rats, many phosphoERK-immunopositive neurones were observed in osmosensitive forebrain regions, including the MNC containing supraoptic nuclei. The intensity of ERK labelling was dose-dependent. Reciprocally, slow intragastric infusions of water that lower osmolality reduced basal ERK phosphorylation. In the supraoptic nucleus, ERK phosphorylation predominated in vasopressin neurones vs. oxytocin neurones and was absent from astrocytes. Western blot experiments confirmed that phosphoERK expression in the supraoptic nucleus was dose dependent. Intracerebroventricular administration of the ERK phosphorylation inhibitor U 0126 before a hyperosmotic challenge reduced the number of both phosphoERK-immunopositive neurones and Fos expressing neurones in osmosensitive forebrain regions. Blockade of ERK phosphorylation also reduced hypertonically induced depolarization and an increase in firing of the supraoptic MNCs recorded in vitro. It finally reduced hypertonically induced vasopressin release in the bloodstream. Altogether, these findings identify ERK phosphorylation as a new element contributing to the osmoregulatory mechanisms of vasopressin release.
神经垂体大细胞神经分泌细胞(MNC)的血管加压素分泌对体液稳态至关重要。MNC 活性的渗透性调节涉及内在机械敏感离子通道的协同调节、局部星形胶质细胞中牛磺酸的释放以及来自渗透压敏感前脑区域的兴奋性输入。细胞外信号调节蛋白激酶(ERK)是丝裂原激活蛋白激酶,可将细胞外刺激转导为细胞内的翻译后和转录反应,导致内在神经元特性和突触功能发生变化。在这里,我们研究了 ERK 激活(即磷酸化)是否在脑前渗透压调节网络的功能中发挥作用。我们发现,在大鼠腹腔内注射高渗盐水(3m、6m)后 10 分钟内,许多磷酸化 ERK-免疫阳性神经元出现在渗透压敏感的前脑区域,包括含有神经垂体的核。ERK 标记的强度与剂量有关。相反,缓慢的胃内水输注会降低渗透压,从而降低基础 ERK 磷酸化。在神经垂体中,ERK 磷酸化主要发生在血管加压素神经元中,而不是催产素神经元中,并且不存在于星形胶质细胞中。Western blot 实验证实,神经垂体核中磷酸化 ERK 的表达与剂量有关。在高渗刺激前,脑室内给予 ERK 磷酸化抑制剂 U0126,可减少渗透压敏感前脑区域中磷酸化 ERK-免疫阳性神经元和 Fos 表达神经元的数量。ERK 磷酸化的阻断也减少了体外记录的神经垂体 MNC 的高渗诱导去极化和放电增加。它最终减少了血液中高渗诱导的血管加压素释放。总之,这些发现确定 ERK 磷酸化是参与血管加压素释放的渗透压调节机制的新因素。