Rabus Ralf, Trautwein Kathleen, Wöhlbrand Lars
Institut für Chemie und Biologie des Meeres (ICBM), AG Allgemeine und Molekulare Mikrobiologie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26111, Oldenburg, Germany,
Appl Microbiol Biotechnol. 2014 Apr;98(8):3371-88. doi: 10.1007/s00253-013-5466-9. Epub 2014 Feb 4.
The denitrifying betaproteobacterium "Aromatoleum aromaticum" EbN1 is a well-studied model organism for anaerobic degradation of aromatic compounds. Following publication of its genome in 2005, comprehensive physiological-proteomic studies were conducted to deduce functional understanding from the genomic blueprint. A catabolic network (85 predicted, 65 identified proteins) for anaerobic degradation of 24 aromatic growth substrates (including 11 newly recognized) was established. Newly elucidated pathways include those for 4-ethylphenol and plant-derived 3-phenylpropanoids, involving functional assignment of several paralogous genes. The substrate-specific regulation of individual peripheral degradation pathways is probably initiated by highly specific chemical sensing via dedicated sensory/regulatory proteins, e.g. three different σ⁵⁴-dependent one-component sensory/regulatory proteins are predicted to discriminate between three phenolic substrates (phenol, p-cresol and 4-ethylphenol) and two different two-component systems are assumed to differentiate between two alkylbenzenes (toluene, ethylbenzene). Investigations under in situ relevant growth conditions revealed (a) preferred utilization of benzoate from a mixture with succinate results from repressed synthesis of a C₄-dicarboxylate TRAP transporter; (b) response to alkylbenzene-induced solvent stress comprises metabolic re-routing of acetyl-CoA and reducing equivalents to poly(3-hydroxybutyrate) synthesis, alteration of cellular membrane composition and formation of putative solvent efflux systems; and (c) multifaceted adaptation to slow growth includes adjustment of energy demand for maintenance and preparedness for future nutritional opportunities, i.e. provision of uptake systems and catabolic enzymes for multiple aromatic substrates despite their absence. This broad knowledge base taken together with the recent development of a genetic system will facilitate future functional, biotechnological (stereospecific dehydrogenases) and habitat re-enacting ("eco-"systems biology) studies with "A. aromaticum" EbN1.
反硝化β-变形菌“芳香烃嗜油菌”EbN1是研究充分的芳香族化合物厌氧降解模式生物。2005年其基因组公布后,开展了全面的生理蛋白质组学研究,以从基因组蓝图推导功能认识。建立了一个用于24种芳香族生长底物(包括11种新确认的底物)厌氧降解的分解代谢网络(预测85种、鉴定出65种蛋白质)。新阐明的途径包括4-乙基苯酚和植物源3-苯基丙烷类化合物的降解途径,涉及几个旁系同源基因的功能分配。各个外周降解途径的底物特异性调控可能由通过专用传感/调节蛋白进行的高度特异性化学传感启动,例如预计三种不同的σ⁵⁴依赖性单组分传感/调节蛋白可区分三种酚类底物(苯酚、对甲酚和4-乙基苯酚),并假定两种不同的双组分系统可区分两种烷基苯(甲苯、乙苯)。在原位相关生长条件下的研究表明:(a) 与琥珀酸混合时对苯甲酸的优先利用源于C₄-二羧酸TRAP转运蛋白合成受抑制;(b) 对烷基苯诱导的溶剂胁迫的反应包括将乙酰辅酶A和还原当量代谢重定向至聚(3-羟基丁酸酯)合成、改变细胞膜组成以及形成假定的溶剂外排系统;(c) 对缓慢生长的多方面适应包括调整维持所需的能量需求以及为未来营养机会做好准备,即尽管缺乏多种芳香族底物,但仍提供摄取系统和分解代谢酶。这一广泛的知识基础与近期遗传系统的开发相结合,将有助于未来对“芳香烃嗜油菌”EbN1进行功能、生物技术(立体特异性脱氢酶)和生境重现(“生态”系统生物学)研究。