Suppr超能文献

对海洋硫酸盐还原丝状菌利氏脱硫线菌和大脱硫线菌生理特性的蛋白质基因组学见解

Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum.

作者信息

Schnaars Vanessa, Wöhlbrand Lars, Scheve Sabine, Hinrichs Christina, Reinhardt Richard, Rabus Ralf

机构信息

General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.

Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany.

出版信息

Microb Physiol. 2021 Feb 19;31(1):1-20. doi: 10.1159/000513383.

Abstract

The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.

摘要

脱硫线菌属属于δ-变形菌纲脱硫杆菌科,包含海洋硫酸盐还原菌,这些细菌形成丝状并通过滑行移动。本研究报告了嗜盐脱硫线菌5ac10T(6.91 Mbp;6207个编码序列)和巨大脱硫线菌4be13T(8.03 Mbp;9970个编码序列)的完整、人工注释基因组,并结合了底物特异性蛋白质组图谱(分别为8个和11个)。移动遗传元件的丰富性与其他脱硫杆菌科成员相同,这证实了水平基因转移是塑造该科基因组的主要驱动力。嗜盐脱硫线菌和巨大脱硫线菌的分解代谢网络具有以下一般特征:分别有98个和145个基因被指定(基因组占比分别为1.7%和2.2%),蛋白质组覆盖率分别为92.5%和89.7%,以及用于底物降解和能量代谢的分散基因簇。巨大脱硫线菌对芳香族化合物(如对甲酚、3-苯丙酸)具有典型的降解能力,这需要48个基因以操纵子样结构组织(蛋白质组覆盖率为87.7%;嗜盐脱硫线菌中无同源物)。两种基因组中脂肪族化合物降解、中心途径和能量代谢的蛋白质互补物高度相似,并且在很大程度上(69 - 96%)被鉴定出来。差异蛋白质图谱显示外周反应序列(形成中心中间体)具有高度的底物特异性,这与预测的两种菌株中大量的传感/调节蛋白一致。相比之下,能量代谢的中心途径和模块在测试的底物条件下是组成型形成的。鉴于它们的自然栖息地会受到物理化学参数波动变化的影响,两种脱硫线菌菌株都具备良好的应对各种应激条件的能力。除了超氧化物歧化酶和过氧化氢酶外,还形成了脱硫铁氧化还原蛋白和红素氧还蛋白氧化还原酶以应对分子氧暴露。检测到多种蛋白酶和伴侣蛋白,它们在热休克或冷休克时维持细胞内稳态中发挥作用。此外,甘氨酸甜菜碱/脯氨酸甜菜碱转运系统可以应对高渗胁迫。滑行运动可能依赖于通过IV型菌毛的抽动运动或冒险运动。综上所述,这项蛋白质基因组学研究证明了嗜盐脱硫线菌和巨大脱硫线菌通过灵活的分解代谢和广泛的应激反应能力对其动态栖息地的适应性。

相似文献

7
The Catabolic Network of Aromatoleum aromaticum EbN1T.
Microb Physiol. 2024;34(1):1-77. doi: 10.1159/000534425. Epub 2023 Oct 10.
9
Gliding motility in bacteria: insights from studies of Myxococcus xanthus.
Microbiol Mol Biol Rev. 1999 Sep;63(3):621-41. doi: 10.1128/MMBR.63.3.621-641.1999.
10
Systems Biology of Aromatic Compound Catabolism in Facultative Anaerobic EbN1.
mSystems. 2022 Dec 20;7(6):e0068522. doi: 10.1128/msystems.00685-22. Epub 2022 Nov 29.

本文引用的文献

1
Root microbiomes as indicators of seagrass health.
FEMS Microbiol Ecol. 2020 Feb 1;96(2). doi: 10.1093/femsec/fiz201.
3
The E. coli MinCDE system in the regulation of protein patterns and gradients.
Cell Mol Life Sci. 2019 Nov;76(21):4245-4273. doi: 10.1007/s00018-019-03218-x. Epub 2019 Jul 17.
6
InterPro in 2019: improving coverage, classification and access to protein sequence annotations.
Nucleic Acids Res. 2019 Jan 8;47(D1):D351-D360. doi: 10.1093/nar/gky1100.
7
OpuF, a New Bacillus Compatible Solute ABC Transporter with a Substrate-Binding Protein Fused to the Transmembrane Domain.
Appl Environ Microbiol. 2018 Oct 1;84(20). doi: 10.1128/AEM.01728-18. Print 2018 Oct 15.
8
Regulated Proteolysis in Bacteria.
Annu Rev Biochem. 2018 Jun 20;87:677-696. doi: 10.1146/annurev-biochem-062917-012848. Epub 2018 Apr 12.
9
Prokaryotic cytoskeletons: protein filaments organizing small cells.
Nat Rev Microbiol. 2018 Apr;16(4):187-201. doi: 10.1038/nrmicro.2017.153. Epub 2018 Jan 22.
10
The chromosomal organization of horizontal gene transfer in bacteria.
Nat Commun. 2017 Oct 10;8(1):841. doi: 10.1038/s41467-017-00808-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验