Suppr超能文献

氧化石墨烯中非常规太赫兹载流子弛豫:因缺陷饱和导致的增强的俄歇复合观察。

Unconventional terahertz carrier relaxation in graphene oxide: observation of enhanced auger recombination due to defect saturation.

机构信息

School of Electrical and Electronic Engineering, Yonsei University , Seoul 120-749, Korea.

出版信息

ACS Nano. 2014 Mar 25;8(3):2486-94. doi: 10.1021/nn406066f. Epub 2014 Feb 10.

Abstract

Photoexcited carrier relaxation is a recurring topic in understanding the transient conductivity dynamics of graphene-based devices. For atomically thin graphene oxide (GO), a simple free-carrier Drude response is expected to govern the terahertz (THz) conductivity dynamics--same dynamics observed in conventional CVD-grown graphene. However, to date, no experimental testimony has been provided on the origin of photoinduced conductivity increase in GO. Here, using ultrafast THz spectroscopy, we show that the photoexcited carrier relaxation in GO exhibits a peculiar non-Drude behavior. Unlike graphene, the THz dynamics of GO show percolation behaviors: as the annealing temperature increases, transient THz conductivity rapidly increases and the associated carrier relaxation changes from mono- to biexponential decay. After saturating the recombination decay through defect trapping, a new ultrafast decay channel characterized by multiparticle Auger scattering is observed whose threshold pump fluence is found to be 50 μJ/cm2. The increased conductivity is rapidly suppressed within 1 ps due to the Auger recombination, and non-Drude THz absorptions are subsequently emerged as a result of the defect-trapped high-frequency oscillators.

摘要

光激发载流子弛豫是理解基于石墨烯器件的瞬态电导率动力学的一个反复出现的主题。对于原子薄的氧化石墨烯(GO),预计简单的自由载流子 Drude 响应将控制太赫兹(THz)电导率动力学——与传统 CVD 生长的石墨烯中观察到的相同动力学。然而,迄今为止,尚未提供关于 GO 中光致电导率增加的起源的实验证据。在这里,我们使用超快太赫兹光谱,表明 GO 中的光激发载流子弛豫表现出特殊的非 Drude 行为。与石墨烯不同,GO 的太赫兹动力学表现出渗流行为:随着退火温度的升高,瞬态太赫兹电导率迅速增加,相关载流子弛豫从单指数衰减变为双指数衰减。通过缺陷捕获使复合衰减饱和后,观察到一个新的超快衰减通道,其特征是多粒子俄歇散射,其阈值泵浦通量被发现为 50 μJ/cm2。由于俄歇复合,增加的电导率在 1 ps 内迅速被抑制,随后由于缺陷捕获的高频振荡器出现非 Drude THz 吸收。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验