Suppr超能文献

利用多阶段电子转移和碰撞诱导解离技术研究气相蛋白离子的盐桥结构。

Exploring salt bridge structures of gas-phase protein ions using multiple stages of electron transfer and collision induced dissociation.

机构信息

Department of Chemistry, University of Massachusetts, LGRT 124, 710 N. Pleasant St., Amherst, MA, 01003, USA.

出版信息

J Am Soc Mass Spectrom. 2014 Apr;25(4):604-13. doi: 10.1007/s13361-013-0821-8. Epub 2014 Feb 5.

Abstract

The gas-phase structures of protein ions have been studied by electron transfer dissociation (ETD) and collision-induced dissociation (CID) after electrospraying these proteins from native-like solutions into a quadrupole ion trap mass spectrometer. Because ETD can break covalent bonds while minimally disrupting noncovalent interactions, we have investigated the ability of this dissociation technique together with CID to probe the sites of electrostatic interactions in gas-phase protein ions. By comparing spectra from ETD with spectra from ETD followed by CID, we find that several proteins, including ubiquitin, CRABP I, azurin, and β-2-microglobulin, appear to maintain many of the salt bridge contacts known to exist in solution. To support this conclusion, we also performed calculations to consider all possible salt bridge patterns for each protein, and we find that the native salt bridge pattern explains the experimental ETD data better than nearly all other possible salt bridge patterns. Overall, our data suggest that ETD and ETD/CID of native protein ions can provide some insight into approximate location of salt bridges in the gas phase.

摘要

通过将这些蛋白质从类似天然的溶液中电喷雾到四极离子阱质谱仪中,然后进行电子转移解离(ETD)和碰撞诱导解离(CID),研究了蛋白质离子的气相结构。由于 ETD 可以在最小程度上破坏非共价相互作用的情况下打破共价键,因此我们研究了这种解离技术与 CID 一起探测气相蛋白质离子中静电相互作用位点的能力。通过比较 ETD 谱与 ETD 后 CID 谱,我们发现包括泛素、CRABP I、天青蛋白和β-2-微球蛋白在内的几种蛋白质似乎保持了许多已知在溶液中存在的盐桥接触。为了支持这一结论,我们还进行了计算以考虑每种蛋白质的所有可能的盐桥模式,并且我们发现天然盐桥模式比几乎所有其他可能的盐桥模式更好地解释了实验 ETD 数据。总的来说,我们的数据表明,天然蛋白质离子的 ETD 和 ETD/CID 可以提供一些关于气相中盐桥近似位置的见解。

相似文献

1
Exploring salt bridge structures of gas-phase protein ions using multiple stages of electron transfer and collision induced dissociation.
J Am Soc Mass Spectrom. 2014 Apr;25(4):604-13. doi: 10.1007/s13361-013-0821-8. Epub 2014 Feb 5.
2
Gas-Phase Protein Salt Bridge Stabilities from Collisional Activation and Electron Transfer Dissociation.
Int J Mass Spectrom. 2017 Sep;420:51-56. doi: 10.1016/j.ijms.2016.09.010. Epub 2016 Sep 20.
3
On performing simultaneous electron transfer dissociation and collision-induced dissociation on multiply protonated peptides in a linear ion trap.
J Am Soc Mass Spectrom. 2009 Sep;20(9):1672-83. doi: 10.1016/j.jasms.2009.05.009. Epub 2009 May 20.
6
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.
J Am Soc Mass Spectrom. 2016 Jun;27(6):975-90. doi: 10.1007/s13361-016-1375-3. Epub 2016 Apr 6.
8
High-energy electron transfer dissociation (HE-ETD) using alkali metal targets for sequence analysis of post-translational peptides.
J Am Soc Mass Spectrom. 2010 Sep;21(9):1482-9. doi: 10.1016/j.jasms.2010.05.010. Epub 2010 Jun 9.
9
Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides.
J Am Soc Mass Spectrom. 2018 May;29(5):1021-1035. doi: 10.1007/s13361-018-1906-1. Epub 2018 Feb 28.
10
Top-Down Characterization of Proteins with Intact Disulfide Bonds Using Activated-Ion Electron Transfer Dissociation.
Anal Chem. 2018 Aug 7;90(15):8946-8953. doi: 10.1021/acs.analchem.8b01113. Epub 2018 Jul 10.

引用本文的文献

2
Gas-Phase Unfolding of Protein Complexes Distinguishes Conformational Isomers.
J Am Chem Soc. 2022 Dec 7;144(48):22128-22139. doi: 10.1021/jacs.2c09573. Epub 2022 Nov 22.
4
In situ mass spectrometry analysis of intact proteins and protein complexes from biological substrates.
Biochem Soc Trans. 2020 Feb 28;48(1):317-326. doi: 10.1042/BST20190793.
6
Weak Acid-Base Interactions of Histidine and Cysteine Affect the Charge States, Tertiary Structure, and Zn(II)-Binding of Heptapeptides.
J Am Soc Mass Spectrom. 2019 Oct;30(10):2068-2081. doi: 10.1007/s13361-019-02275-7. Epub 2019 Jul 22.
8
Gas Phase Stability of Protein Ions in a Cyclic Ion Mobility Spectrometry Traveling Wave Device.
Anal Chem. 2019 Jun 18;91(12):7554-7561. doi: 10.1021/acs.analchem.8b05641. Epub 2019 Jun 5.
9
A Semi-Empirical Framework for Interpreting Traveling Wave Ion Mobility Arrival Time Distributions.
J Am Soc Mass Spectrom. 2019 Jun;30(6):956-966. doi: 10.1007/s13361-019-02133-6. Epub 2019 Feb 27.
10
Gas-Phase Ion/Ion Chemistry as a Probe for the Presence of Carboxylate Groups in Polypeptide Cations.
J Am Soc Mass Spectrom. 2019 Feb;30(2):329-338. doi: 10.1007/s13361-018-2079-7. Epub 2018 Oct 19.

本文引用的文献

2
Intrinsically disordered p53 and its complexes populate compact conformations in the gas phase.
Angew Chem Int Ed Engl. 2013 Jan 2;52(1):361-5. doi: 10.1002/anie.201203047. Epub 2012 Jul 9.
3
How ubiquitin unfolds after transfer into the gas phase.
J Am Soc Mass Spectrom. 2012 Jun;23(6):1011-4. doi: 10.1007/s13361-012-0370-6. Epub 2012 Apr 3.
4
Energetics of lipid binding in a hydrophobic protein cavity.
J Am Chem Soc. 2012 Feb 15;134(6):3054-60. doi: 10.1021/ja208909n. Epub 2012 Feb 2.
6
Electrostatic stabilization of a native protein structure in the gas phase.
Angew Chem Int Ed Engl. 2011 Jan 24;50(4):873-7. doi: 10.1002/anie.201005112. Epub 2010 Nov 9.
7
Hydrophobic protein-ligand interactions preserved in the gas phase.
J Am Chem Soc. 2009 Nov 11;131(44):15980-1. doi: 10.1021/ja9060454.
8
Structures of protonated dipeptides: the role of arginine in stabilizing salt bridges.
J Am Chem Soc. 2009 Aug 19;131(32):11442-9. doi: 10.1021/ja901870d.
9
Stepwise evolution of protein native structure with electrospray into the gas phase, 10(-12) to 10(2) s.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18145-52. doi: 10.1073/pnas.0807005105.
10
Early structural evolution of native cytochrome c after solvent removal.
Chembiochem. 2008 Oct 13;9(15):2417-23. doi: 10.1002/cbic.200800167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验