Department of Chemistry, University of Massachusetts, LGRT 124, 710 N. Pleasant St., Amherst, MA, 01003, USA.
J Am Soc Mass Spectrom. 2014 Apr;25(4):604-13. doi: 10.1007/s13361-013-0821-8. Epub 2014 Feb 5.
The gas-phase structures of protein ions have been studied by electron transfer dissociation (ETD) and collision-induced dissociation (CID) after electrospraying these proteins from native-like solutions into a quadrupole ion trap mass spectrometer. Because ETD can break covalent bonds while minimally disrupting noncovalent interactions, we have investigated the ability of this dissociation technique together with CID to probe the sites of electrostatic interactions in gas-phase protein ions. By comparing spectra from ETD with spectra from ETD followed by CID, we find that several proteins, including ubiquitin, CRABP I, azurin, and β-2-microglobulin, appear to maintain many of the salt bridge contacts known to exist in solution. To support this conclusion, we also performed calculations to consider all possible salt bridge patterns for each protein, and we find that the native salt bridge pattern explains the experimental ETD data better than nearly all other possible salt bridge patterns. Overall, our data suggest that ETD and ETD/CID of native protein ions can provide some insight into approximate location of salt bridges in the gas phase.
通过将这些蛋白质从类似天然的溶液中电喷雾到四极离子阱质谱仪中,然后进行电子转移解离(ETD)和碰撞诱导解离(CID),研究了蛋白质离子的气相结构。由于 ETD 可以在最小程度上破坏非共价相互作用的情况下打破共价键,因此我们研究了这种解离技术与 CID 一起探测气相蛋白质离子中静电相互作用位点的能力。通过比较 ETD 谱与 ETD 后 CID 谱,我们发现包括泛素、CRABP I、天青蛋白和β-2-微球蛋白在内的几种蛋白质似乎保持了许多已知在溶液中存在的盐桥接触。为了支持这一结论,我们还进行了计算以考虑每种蛋白质的所有可能的盐桥模式,并且我们发现天然盐桥模式比几乎所有其他可能的盐桥模式更好地解释了实验 ETD 数据。总的来说,我们的数据表明,天然蛋白质离子的 ETD 和 ETD/CID 可以提供一些关于气相中盐桥近似位置的见解。