Beyer Antje, Pollok Sibyll, Berg Albrecht, Weber Karina, Popp Jürgen
Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745, Jena, Germany; Institute of Physical Chemistry and Abbe Centre of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany.
Macromol Biosci. 2014 Jun;14(6):889-98. doi: 10.1002/mabi.201300487. Epub 2014 Feb 3.
The fabrication of 3D hydrogel microarrays for DNA analytics that allow simple visual signal readout for on-site applications is described. A convenient one-step polymerization of the hydrogel including in situ capture oligonucleotide immobilization is accomplished by using N,N'-dimethylacrylamide/polyethylene glycol (PEG1900 )-bisacrylamide monomers. The implementation of an acylphosphine-oxide photoinitiator even allows polymerization at daylight, whereas other approaches require exposure with light in the UV-range. This minimizes the risk of UV-caused DNA damages within the capture DNA-strand that could adversely affect the subsequent hybridization step. The porous network of these gel segments allows DNA as well as protein penetration. Thus, the successful in-gel DNA hybridization is monitored by the deposition of silver nanoparticles. These metal particles allow naked eye signal readout.