Smith Paul F, Kaplan Christopher, Sheats John E, Robinson David M, McCool Nicholas S, Mezle Nicholas, Dismukes G Charles
Department of Chemistry and Chemical Biology, Rutgers University , 610 Taylor Road, Piscataway, New Jersy 08854, United States.
Inorg Chem. 2014 Feb 17;53(4):2113-21. doi: 10.1021/ic402720p. Epub 2014 Feb 5.
The metal-oxo M4O4 "cubane" topology is of special significance to the field of water oxidation as it represents the merging of bioinspired structural principles derived from natural photosynthesis with successful artificial catalysts known to date. Herein, we directly compare the rates of water oxidation/O2 evolution catalyzed by six cobalt-oxo clusters including the Co4O4 cubanes, Co4O4(OAc)4(py)4 and Co4O4(OAc)2(bpy)4, using the common Ru(bpy)3(2+)/S2O8(2-) photo-oxidant assay. At pH 8, the first-order rate constants for these cubanes differ by 2-fold, 0.030 and 0.015 s(-1), respectively, reflecting the number of labile carboxylate sites that allow substrate water binding in a pre-equilibrium step before O2 release. Kinetic results reveal a deprotonation step occurs on this pathway and that two electrons are removed before O2 evolution occurs. The Co4O4 cubane core is shown to be the smallest catalytic unit for the intramolecular water oxidation pathway, as neither "incomplete cubane" trimers Co3O(OH)3(OAc)2(bpy)3 and Co3O(OH)2(OAc)3(py)5 nor "half cubane" dimers Co2(OH)2(OAc)3(bpy)2 and Co2(OH)2(OAc)3(py)4 were found capable of evolving O2, despite having the same ligand sets as their cubane counterparts. Electrochemical studies reveal that oxidation of both cubanes to formally Co4(3III,IV) (0.7 V vs Ag/AgCl) occurs readily, while neither dimers nor trimers are oxidized below 1.5 V, pointing to appreciably greater charge delocalization in the Co4O4 core. The origin of catalytic activity by Co4O4 cubanes illustrates three key features for water oxidation: (1) four one-electron redox metals, (2) efficient charge delocalization of the first oxidation step across the Co4O4 cluster, allowing for stabilization of higher oxidizing equivalents, and (3) terminal coordination site for substrate aquo/oxo formation.
金属氧代M4O4“立方烷”拓扑结构在水氧化领域具有特殊意义,因为它代表了源自自然光合作用的受生物启发的结构原理与迄今已知的成功人工催化剂的融合。在此,我们使用常见的Ru(bpy)3(2+)/S2O8(2-)光氧化测定法,直接比较了六种钴氧簇(包括Co4O4立方烷、Co4O4(OAc)4(py)4和Co4O4(OAc)2(bpy)4)催化水氧化/O2析出的速率。在pH 8时,这些立方烷的一级速率常数相差2倍,分别为0.030和0.015 s(-1),这反映了在O2释放前的预平衡步骤中允许底物水结合的不稳定羧酸根基团的数量。动力学结果表明,在该途径上发生了去质子化步骤,并且在O2析出之前移除了两个电子。Co4O4立方烷核心被证明是分子内水氧化途径的最小催化单元,因为“不完全立方烷”三聚体Co3O(OH)3(OAc)2(bpy)3和Co3O(OH)2(OAc)3(py)5以及“半立方烷”二聚体Co2(OH)2(OAc)3(bpy)2和Co2(OH)2(OAc)3(py)4均未发现能够析出O2,尽管它们与立方烷对应物具有相同的配体集。电化学研究表明,两种立方烷都很容易氧化为形式上的Co4(3III,IV)(相对于Ag/AgCl为0.7 V),而二聚体和三聚体在1.5 V以下均未被氧化,这表明Co4O4核心中的电荷离域明显更大。Co4O4立方烷的催化活性起源说明了水氧化的三个关键特征:(1)四个单电子氧化还原金属,(2)第一个氧化步骤在Co4O4簇上的有效电荷离域,允许更高氧化态的稳定,以及(3)底物水合/氧代形成的末端配位位点。