Mechanical and Industrial Engineering and Institute for Sustainable Energy, University of Toronto , 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
Environ Sci Technol. 2014 Mar 18;48(6):3567-74. doi: 10.1021/es404618y. Epub 2014 Mar 3.
Impurities can greatly modify the phase behavior of carbon dioxide (CO2), with significant implications on the safety and cost of transport in pipelines. In this paper we demonstrate a microfluidic approach to measure the dew point of such mixtures, specifically the point at which water in supercritical CO2 mixtures condenses to a liquid state. The method enables direct visualization of dew formation (∼ 1-2 μm diameter droplets) at industrially relevant concentrations, pressures, and temperatures. Dew point measurements for the well-studied case of pure CO2-water agreed well with previous theoretical and experimental data over the range of pressure (up to 13.17 MPa), temperature (up to 50 °C), and water content (down to 0.00229 mol fraction) studied. The microfluidic approach showed a nearly 3-fold reduction in error as compared to previous methods. When applied to a mixture with nitrogen (2.5%) and oxygen (5.8%) impurities--typical of flue gas from natural gas oxy-fuel combustion processes--the measured dew point pressure increased on average 17.55 ± 5.4%, indicating a more stringent minimum pressure for pipeline transport. In addition to increased precision, the microfluidic method offers a direct measurement of dew formation, requires very small volumes (∼ 10 μL), and is applicable to ultralow water contents (<0.005 mol fractions), circumventing the limits of previous methods.
杂质会极大地改变二氧化碳(CO2)的相行为,对管道运输的安全性和成本有重大影响。在本文中,我们展示了一种用于测量此类混合物露点的微流控方法,特别是超临界 CO2 混合物中水分凝结成液态的临界点。该方法能够直接观察到在工业相关浓度、压力和温度下形成的露水(直径约 1-2μm 的液滴)。在研究的范围内,对纯水和纯 CO2 的已有充分研究案例进行了露点测量,结果与之前的理论和实验数据非常吻合,压力范围为(高达 13.17 MPa),温度范围为(高达 50°C),水含量范围为(低至 0.00229 摩尔分数)。与之前的方法相比,微流控方法的误差降低了近 3 倍。当应用于含有氮(2.5%)和氧(5.8%)杂质的混合物(典型的天然气富氧燃烧过程中的烟道气)时,测量的露点压力平均增加了 17.55±5.4%,表明管道运输的最低压力更严格。除了提高精度外,微流控方法还提供了对露水形成的直接测量,所需的体积非常小(约 10μL),并且适用于超低的水含量(<0.005 摩尔分数),避免了之前方法的限制。