Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA. Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
Bioinspir Biomim. 2014 Mar;9(1):016014. doi: 10.1088/1748-3182/9/1/016014. Epub 2014 Feb 7.
To study the mechanical principles and fluid dynamics of ultrafast power-amplified systems, we built Ninjabot, a physical model of the extremely fast mantis shrimp (Stomatopoda). Ninjabot rotates a to-scale appendage within the environmental conditions and close to the kinematic range of mantis shrimp's rotating strike. Ninjabot is an adjustable mechanism that can repeatedly vary independent properties relevant to fast aquatic motions to help isolate their individual effects. Despite exceeding the kinematics of previously published biomimetic jumpers and reaching speeds in excess of 25 m s(-1) at accelerations of 3.2 × 10(4) m s(-2), Ninjabot can still be outstripped by the fastest mantis shrimp, Gonodactylus smithii, measured for the first time in this study. G. smithii reached 30 m s(-1) at accelerations of 1.5 × 10(5) m s(-2). While mantis shrimp produce cavitation upon impact with their prey, they do not cavitate during the forward portion of their strike despite their extreme speeds. In order to determine how closely to match Ninjabot and mantis shrimp kinematics to capture this cavitation behavior, we used Ninjabot to produce strikes of varying kinematics and to measure cavitation presence or absence. Using Akaike Information Criterion to compare statistical models that correlated cavitation with a variety of kinematic properties, we found that in rotating and accelerating biological conditions, cavitation inception is best explained only by maximum linear velocity.
为了研究超快功率放大系统的力学原理和流体动力学,我们制造了 NinjaBot,这是一种极度快速的螳螂虾(Stomatopoda)的物理模型。NinjaBot 在接近螳螂虾旋转攻击的运动范围和环境条件下,旋转一个按比例缩小的附肢。NinjaBot 是一个可调节的机构,可以反复改变与快速水动力相关的独立特性,以帮助隔离它们各自的影响。尽管 NinjaBot 的运动学超过了以前发表的仿生跳跃器的运动学,并达到了超过 25 m s(-1) 的速度,加速度为 3.2×10(4) m s(-2),但它仍然可以被研究中首次测量到的最快的螳螂虾 Gonodactylus smithii 超越。G. smithii 的速度达到了 30 m s(-1),加速度为 1.5×10(5) m s(-2)。虽然螳螂虾在与猎物撞击时会产生空化,但它们在攻击的前半部分不会产生空化,尽管它们的速度非常快。为了确定 NinjaBot 和螳螂虾运动学的匹配程度,以捕捉这种空化行为,我们使用 NinjaBot 产生不同运动学的攻击,并测量空化的存在或不存在。使用 Akaike 信息准则来比较与各种运动学特性相关的空化的统计模型,我们发现,在旋转和加速的生物条件下,空化的起始仅可以通过最大线性速度来最好地解释。