Suppr超能文献

下一代测序技术在揭示藻类进化历史中的应用。

Applications of next-generation sequencing to unravelling the evolutionary history of algae.

机构信息

Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

Codes Division, Insilicogen Inc., Suwon, 440-746, Republic of Korea.

出版信息

Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):333-345. doi: 10.1099/ijs.0.054221-0.

Abstract

First-generation Sanger DNA sequencing revolutionized science over the past three decades and the current next-generation sequencing (NGS) technology has opened the doors to the next phase in the sequencing revolution. Using NGS, scientists are able to sequence entire genomes and to generate extensive transcriptome data from diverse photosynthetic eukaryotes in a timely and cost-effective manner. Genome data in particular shed light on the complicated evolutionary history of algae that form the basis of the food chain in many environments. In the Eukaryotic Tree of Life, the fact that photosynthetic lineages are positioned in four supergroups has important evolutionary consequences. We now know that the story of eukaryotic photosynthesis unfolds with a primary endosymbiosis between an ancestral heterotrophic protist and a captured cyanobacterium that gave rise to the glaucophytes, red algae and Viridiplantae (green algae and land plants). These primary plastids were then transferred to other eukaryotic groups through secondary endosymbiosis. A red alga was captured by the ancestor(s) of the stramenopiles, alveolates (dinoflagellates, apicomplexa, chromeridae), cryptophytes and haptophytes, whereas green algae were captured independently by the common ancestors of the euglenophytes and chlorarachniophytes. A separate case of primary endosymbiosis is found in the filose amoeba Paulinella chromatophora, which has at least nine heterotrophic sister species. Paulinella genome data provide detailed insights into the early stages of plastid establishment. Therefore, genome data produced by NGS have provided many novel insights into the taxonomy, phylogeny and evolutionary history of photosynthetic eukaryotes.

摘要

第一代桑格 DNA 测序在过去三十年中彻底改变了科学,而当前的下一代测序(NGS)技术为测序革命的下一阶段打开了大门。利用 NGS,科学家能够及时且经济高效地对整个基因组进行测序,并从各种光合真核生物中生成广泛的转录组数据。基因组数据特别揭示了藻类的复杂进化历史,藻类是许多环境中食物链的基础。在真核生物生命之树中,光合谱系位于四个超群中的事实具有重要的进化后果。我们现在知道,真核光合作用的故事是通过一个原始异养原生生物和一个被捕获的蓝细菌之间的主要内共生作用展开的,这导致了蓝藻、红藻和绿藻(绿藻和陆地植物)的产生。这些原始质体随后通过二次内共生作用转移到其他真核群体中。红藻被有孔虫、纤毛动物(甲藻、顶复动物、色素体科)、隐藻和甲藻的祖先捕获,而绿藻则是由眼虫和 Chlorarachniophytes 的共同祖先独立捕获的。丝状变形虫 Paulinella chromatophora 中发现了一个单独的原始内共生案例,它至少有九个异养姐妹种。Paulinella 基因组数据为质体建立的早期阶段提供了详细的见解。因此,NGS 产生的基因组数据为光合真核生物的分类学、系统发育和进化历史提供了许多新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验