Chen Cheng, Xie Weiguo, Franke Jochen, Grützner Paul A, Nolte Lutz-P, Zheng Guoyan
Institute for Surgical Technologies and Biomechanics, Universität Bern, Switzerland.
BG Clinic Ludwigshafen, Ludwigshafen, Germany.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):227-34. doi: 10.1007/978-3-642-40760-4_29.
We propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. Our algorithm works by estimating the displacements from image patches to the (unknown) landmark positions and then integrating them via voting. The fundamental contribution is that, we jointly estimate the displacements from all patches to multiple landmarks together, by considering not only the training data but also geometric constraints on the test image. The various constraints constitute a convex objective function that can be solved efficiently. Validated on three challenging datasets, our method achieves high accuracy in landmark detection, and, combined with statistical shape model, gives a better performance in shape segmentation compared to the state-of-the-art methods.
我们提出了一种用于在X射线图像中进行全自动地标检测和形状分割的新方法。我们的算法通过估计图像块到(未知)地标位置的位移,然后通过投票将它们整合起来。其根本贡献在于,我们不仅考虑训练数据,还考虑测试图像上的几何约束,共同估计所有图像块到多个地标的位移。各种约束构成了一个可以有效求解的凸目标函数。在三个具有挑战性的数据集上进行验证,我们的方法在地标检测中实现了高精度,并且与统计形状模型相结合,与现有方法相比,在形状分割方面表现更好。