Suppr超能文献

Amiloride and amiloride analogs inhibit Na+/K+-transporting ATPase and Na+-coupled alanine transport in rat hepatocytes.

作者信息

Renner E L, Lake J R, Cragoe E J, Scharschmidt B F

机构信息

Department of Medicine and Liver Center, University of California School of Medicine, San Francisco.

出版信息

Biochim Biophys Acta. 1988 Mar 3;938(3):386-94. doi: 10.1016/0005-2736(88)90136-8.

Abstract

Amiloride, a commonly used inhibitor of Na+-H+ exchange, has been shown to exhibit a variety of nonspecific effects. Recently, the more potent amiloride analogs, 5-(N,N-dimethyl)amiloride hydrochloride (DMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIA), have been used to control for the nonspecific effects of the parent compound. In the present study, we have explored the effects of these analogs on Na+/K+-transporting ATPase (Na+/K+-ATPase) and Na+-coupled alanine transport in primary rat hepatocyte cultures and rat liver plasma membranes, and we have compared the effects of these analogs with the effects of amiloride and ouabain. Amiloride, DMA, and EIA increased steady-state Na+ content and inhibited ouabain-sensitive 86Rb+ uptake in a reversible, concentration-dependent, ouabain-like manner, with estimated 50% inhibitory concentrations (IC50) of 3.0.10(-3) M, 5.2.10(-4) M, and 1.2.10(-4) M, respectively. Amiloride, DMA and EIA also inhibited ouabain-sensitive ATP hydrolysis in rat liver plasma membranes with similar potency (IC50 values of 2.2.10(-3) M, 2.2.10(-3) M, and 1.7.10(-4) M, respectively). In separate experiments, amiloride (5.10(-3) M), DMA (10(-3) M), and EIA (2.5.10(-4) M) decreased the uptake into hepatocytes of alanine by 20%, 61%, and 59%, respectively, and further studies with DMA (10(-3) M) demonstrated that this inhibition was largely due to a decrease in the Na+-dependent fraction of alanine uptake. These findings indicate that amiloride, DMA, and EIA inhibit hepatic Na+/K+-ATPase directly, reversibly, and with a relative rank order potency of EIA greater than DMA greater than amiloride. All three compounds also inhibit the hepatic uptake of alanine, and presumably could indirectly inhibit other Na+-coupled transport processes as well.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验