Department of Radiology, Stanford University, Stanford, California 94305.
Liverpool and Macarthur Cancer Therapy Centres, The University of Sydney, NSW 2006, Australia.
Med Phys. 2014 Feb;41(2):022301. doi: 10.1118/1.4860660.
This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted.
Simple electron gun geometry modifications of a Varian 600 C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600 C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner.
Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ± 15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields.
In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600 C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.
本研究提出了一种新的电子枪几何形状,能够在高强度外部磁场存在的情况下稳健运行,适用于轴对称磁共振成像(MRI)-直线加速器(linac)配置。这使得Inline MRI-linac 能够在无需使用磁屏蔽隔离直线加速器的情况下运行。这种 MRI-linac 集成方法不仅保持了磁场的均匀性不变,而且还为直线加速器提供了灵活性,如果需要调整源到目标的距离,直线加速器可以沿着磁铁的对称轴移动。
考虑了瓦里安 600 C 电子枪的简单电子枪几何形状修改,并在存在外部磁场的情况下进行了求解,以确定新几何形状的一组设计原则。基于这些结果,提出并优化了一种新的枪几何形状,该形状位于 0.5T 开磁孔 MRI 磁体(GE Signa SP)的边缘场中。使用用于 6 MeV 瓦里安 600 C linac 的计算机模型来确定在相同 MRI 扫描仪的边缘场中存在的新电子枪-linac 系统的捕获效率。还研究了新电子枪加直线加速器系统在另外两个磁体的边缘场中的行为,这两个磁体分别是 1.0T 原型开磁孔磁体和 1.5T GE Conquest 扫描仪。
原始电子枪几何形状的简单几何修改不能提供可行的解决方案。然而,这些测试表明,较小的横向阴极直径和平坦表面以及稍大的阳极直径可以减轻由于磁场中电子束与阳极相互作用而导致的电流损失。基于这些发现,提出了一种类似于带孔阳极的平行板电容器的初始几何形状。优化过程找到了 5mm 的阴极-阳极距离、5°的聚焦电极角度和 17.1mm 的阳极漂移管长度。此外,直线加速器可以在 0.5T 磁体的轴线上沿±15cm 位移,而在零场中的捕获效率不会降低到实验值以下。在这个直线加速器位移范围内,与零场时原始枪几何形状的行为相比,新枪几何形状产生的电子束在外部磁场中更有效地注入到直线加速器中,导致目标电流增加约 20%。新的枪几何形状可以在外部磁场中产生和加速电子束,而不会出现电流损失,对于磁场高于 0.11T 的情况也是如此。新的电子枪几何形状足够坚固,可以在其他两个磁体的边缘场中运行,相对于没有外部磁场时获得的电流,目标电流损失不超过 16%。
在这项工作中,提出了一种专门设计的电子枪,它可以在 MRI 磁体的轴对称强磁场边缘场中运行。计算机模拟表明,电子枪可以产生高质量的电子束,可以在存在外部磁场的情况下更有效地注入到瓦里安 600 C 等直线加速器中,并在外部磁场中提高加速效率。此外,新的配置允许直线加速器在等于所考虑的磁体成像球形体积直径的范围内沿磁体的轴线移动。如果阴极位置的磁场强度高于 0.11T,则新的电子枪-linac 系统可以在 MRI 磁体的边缘场中运行。直线加速器的捕获效率取决于磁场强度和梯度。梯度越高,捕获效率越好。捕获效率不会降低超过 16%。