Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
Med Phys. 2012 Feb;39(2):788-97. doi: 10.1118/1.3676692.
In our current linac-magnetic resonance (MR) design, a 6 MV in-line linac is placed along the central axis of the MR's magnet where the MR's fringe magnetic fields are parallel to the overall electron trajectories in the linac waveguide. Our previous study of this configuration comprising a linac-MR SAD of 100 cm and a 0.5 T superconducting (open, split) MR imager. It showed the presence of longitudinal magnetic fields of 0.011 T at the electron gun, which caused a reduction in target current to 84% of nominal. In this study, passive and active magnetic shielding was investigated to recover the linac output losses caused by magnetic deflections of electron trajectories in the linac within a parallel linac-MR configuration.
Magnetic materials and complex shield structures were used in a 3D finite element method (FEM) magnetic field model, which emulated the fringe magnetic fields of the MR imagers. The effects of passive magnetic shielding was studied by surrounding the electron gun and its casing with a series of capped steel cylinders of various inner lengths (26.5-306.5 mm) and thicknesses (0.75-15 mm) in the presence of the fringe magnetic fields from a commercial MR imager. In addition, the effects of a shield of fixed length (146.5 mm) with varying thicknesses were studied against a series of larger homogeneous magnetic fields (0-0.2 T). The effects of active magnetic shielding were studied by adding current loops around the electron gun and its casing. The loop currents, separation, and location were optimized to minimize the 0.011 T longitudinal magnetic fields in the electron gun. The magnetic field solutions from the FEM model were added to a validated linac simulation, consisting of a 3D electron gun (using OPERA-3d/scala) and 3D waveguide (using comsol Multiphysics and PARMELA) simulations. PARMELA's target current and output phase-space were analyzed to study the linac's output performance within the magnetic shields.
The FEM model above agreed within 1.5% with the manufacturer supplied fringe magnetic field isoline data. When passive magnetic shields are used, the target current is recoverable to greater than 99% of nominal for shield thicknesses greater than 0.75 mm. The optimized active shield which resulted in 100% target current recovery consists of two thin current rings 110 mm in diameter with 625 and 430 A-turns in each ring. With the length of the passive shield kept constant, the thickness of the shield had to be increased to achieve the same target current within the increased longitudinal magnetic fields.
A ≥99% original target current is recovered with passive shield thicknesses >0.75 mm. An active shield consisting of two current rings of diameter of 110 mm with 625 and 430 A-turns fully recovers the loss that would have been caused by the magnetic fields. The minimal passive or active shielding requirements to essentially fully recover the current output of the linac in our parallel-configured linac-MR system have been determined and are easily achieved for practical implementation of the system.
在我们目前的直线加速器-磁共振(MR)设计中,6 MV 直线加速器沿着磁共振磁体的中心轴放置,磁共振的边缘磁场与直线加速器波导中的电子轨迹的整体方向平行。我们之前对这个配置进行了研究,包括直线加速器-MR 的 SAD 为 100 cm 和 0.5 T 的超导(开放式,分裂)MR 成像仪。结果显示,在电子枪处存在 0.011 T 的纵向磁场,这导致靶电流减少到标称值的 84%。在这项研究中,研究了被动和主动磁屏蔽,以在平行直线加速器-MR 配置中恢复由于电子轨迹在直线加速器中的磁偏转而导致的直线加速器输出损耗。
使用 3D 有限元方法(FEM)磁场模型中的磁性材料和复杂屏蔽结构,该模型模拟了磁共振成像仪的边缘磁场。通过在商业磁共振成像仪的边缘磁场存在的情况下,用一系列带有不同内长(26.5-306.5 mm)和厚度(0.75-15 mm)的带帽钢筒环绕电子枪及其外壳,研究了被动磁屏蔽的效果。此外,研究了在一系列较大的均匀磁场(0-0.2 T)下,具有不同厚度的固定长度(146.5 mm)屏蔽的效果。通过在电子枪及其外壳周围添加电流环,研究了主动磁屏蔽的效果。优化了环电流、间距和位置,以将电子枪中的 0.011 T 纵向磁场最小化。将 FEM 模型的磁场解决方案添加到经过验证的直线加速器模拟中,该模拟包括 3D 电子枪(使用 OPERA-3d/scala)和 3D 波导(使用 comsol Multiphysics 和 PARMELA)模拟。分析 PARMELA 的靶电流和输出相空间,以研究磁屏蔽内直线加速器的输出性能。
上述 FEM 模型与制造商提供的边缘磁场等压线数据的一致性在 1.5%以内。当使用被动磁屏蔽时,对于厚度大于 0.75 mm 的屏蔽,靶电流可恢复到标称值的 99%以上。导致 100%靶电流恢复的优化主动屏蔽由两个直径为 110 mm 的薄电流环组成,每个环中有 625 和 430 A 匝。在保持被动屏蔽长度不变的情况下,必须增加屏蔽的厚度,以在增加的纵向磁场内获得相同的靶电流。
使用厚度大于 0.75 mm 的被动屏蔽可恢复≥99%的原始靶电流。由直径为 110 mm 的两个电流环组成的主动屏蔽,每个环有 625 和 430 A 匝,可完全恢复磁场造成的损失。为了在我们的平行配置直线加速器-MR 系统中基本上完全恢复直线加速器的电流输出,已经确定了最小的被动或主动屏蔽要求,并且很容易实现系统的实际实施。