Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA; Hollings Marine Laboratory, 331 Fort Johnson, Charleston, SC 29412, USA.
Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA; Hollings Marine Laboratory, 331 Fort Johnson, Charleston, SC 29412, USA.
Comp Biochem Physiol B Biochem Mol Biol. 2014 Apr;170:43-9. doi: 10.1016/j.cbpb.2014.01.006. Epub 2014 Feb 6.
Estuarine waters are prone to regular bouts of low oxygen (hypoxia) and high carbon dioxide (hypercapnia). In vertebrates, tissue hypoxia followed by reoxygenation can generate high levels of reactive oxygen species (ROS) that exceed cellular antioxidant capacity, leading to tissue damage. Here we quantified the expression of several antioxidant genes in the hepatopancreas of Pacific whiteleg shrimp, Litopenaeus vannamei, after exposure to hypoxia or hypercapnic hypoxia for 4h or 24h followed by recovery in air-saturated water (normoxia) for 0, 1, 6 or 24h, as compared to time-matched controls maintained only in normoxia. Transcripts of cytoplasmic Mn-superoxide dismutase (cMnSOD), glutathione peroxidase (GPX) and peptide-methionine (R)-S-oxide reductase (MsrB) increased after 4h exposure to either hypoxia or hypercapnic hypoxia; these elevated transcript levels persisted longer in animals recovering from hypercapnic hypoxia than hypoxia alone. cMnSOD transcripts generally increased, but GPX, MsrB, glutathione-S-transferase (GST), and thioredoxin 1 (TRX-1) decreased or did not change in most long-term (24h) treatment-recovery groups. Thus, the transcriptional responses of several antioxidant genes during recovery from tidally-driven hypoxia and hypercapnic hypoxia decrease or are muted by more persistent exposure to these conditions, leaving L. vannamei potentially vulnerable to ROS damage during recovery.
河口水域容易出现周期性的低氧(缺氧)和高二氧化碳(高碳酸血症)。在脊椎动物中,组织缺氧后再复氧会产生大量超过细胞抗氧化能力的活性氧(ROS),导致组织损伤。在这里,我们在太平洋白对虾(Litopenaeus vannamei)的肝胰腺中定量检测了几种抗氧化基因的表达,这些虾在经历 4 小时或 24 小时的低氧或高碳酸缺氧后,再在空气饱和水中(常氧)恢复 0、1、6 或 24 小时,与仅在常氧下保持的时间匹配的对照组相比。细胞质锰超氧化物歧化酶(cMnSOD)、谷胱甘肽过氧化物酶(GPX)和肽-甲硫氨酸(R)-S-氧化物还原酶(MsrB)的转录物在暴露于低氧或高碳酸缺氧 4 小时后增加;在从高碳酸缺氧中恢复的动物中,这些升高的转录物水平比单独缺氧时持续时间更长。cMnSOD 转录物通常增加,但 GPX、MsrB、谷胱甘肽-S-转移酶(GST)和硫氧还蛋白 1(TRX-1)在大多数长期(24 小时)处理-恢复组中减少或没有变化。因此,在从潮汐驱动的缺氧和高碳酸缺氧中恢复期间,几种抗氧化基因的转录反应减少或被这些条件的持续暴露所抑制,使 L. vannamei在恢复期间容易受到 ROS 损伤。