Suppr超能文献

Interactions of Escherichia coli transcription termination factor rho with RNA. I. Binding stoichiometries and free energies.

作者信息

McSwiggen J A, Bear D G, von Hippel P H

机构信息

Institute of Molecular Biology, University of Oregon, Eugene 97403.

出版信息

J Mol Biol. 1988 Feb 20;199(4):609-22. doi: 10.1016/0022-2836(88)90305-1.

Abstract

In this paper we examine the binding of Escherichia coli transcription termination factor rho to single-stranded RNA. Random polyribonucleotide copolymers containing low ratios of the fluorescent base 1,N6-ethenoadenosine have been synthesized using polynucleotide phosphorylase. Binding of rho to these polynucleotides elicits a significant increase in fluorescence, thus allowing either the direct monitoring of the titration of these polynucleotides with rho or measurement of the competitive displacement of the protein from these probes with other nucleic acids, even in the presence of biologically significant concentrations of ATP. By these techniques, it is shown that the binding site size (n) of rho protein to polynucleotides is 13(+/- 1) nucleotide residues per rho monomer (or 78(+/- 6) nucleotide residues per rho hexamer). Binding constants (K) and co-operativity parameters (omega) for the binding of rho to these polynucleotides have been measured as a function of nucleotide composition and of salt concentration. The results show that the affinity of rho for cytosine residues is quite strong and salt concentration independent, whilst binding to uridine residues is somewhat weaker and very salt concentration dependent. Poly(rC) and poly(dC) bind to rho competitively and with equal affinity and site size, although poly(rC) is the strongest cofactor for activating rho-dependent ATPase and poly(dC) has no ATPase cofactor activity at all. It is also shown that ATP (or ADP or ATP-gamma-S) binding does not change the binding site size of rho on RNA nor decrease its affinity for RNA binding. Circular dichroism measurements of rho binding to phage R17 RNA suggest that the affinity (K omega) of rho for RNA may be increased by ATP. The possible significance of these results for models of rho-dependent transcription termination is discussed in the companion paper.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验