Suppr超能文献

利用 RECIST 1.1 数据仓库评估替代分类肿瘤指标和截断值,以进行反应分类。

Evaluation of alternate categorical tumor metrics and cut points for response categorization using the RECIST 1.1 data warehouse.

机构信息

Sumithra J. Mandrekar, Jeffrey Meyers, Axel Grothey, and Daniel J. Sargent, Mayo Clinic, Rochester, MN; Ming-Wen An, Vassar College, Poughkeepsie, NY; and Jan Bogaerts, European Organisation for Research and Treatment of Cancer, Brussels, Belgium.

出版信息

J Clin Oncol. 2014 Mar 10;32(8):841-50. doi: 10.1200/JCO.2013.52.3019. Epub 2014 Feb 10.

Abstract

PURPOSE

We sought to test and validate the predictive utility of trichotomous tumor response (TriTR; complete response [CR] or partial response [PR] v stable disease [SD] v progressive disease [PD]), disease control rate (DCR; CR/PR/SD v PD), and dichotomous tumor response (DiTR; CR/PR v others) metrics using alternate cut points for PR and PD. The data warehouse assembled to guide the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 was used.

METHODS

Data from 13 trials (5,480 patients with metastatic breast cancer, non-small-cell lung cancer, or colorectal cancer) were randomly split (60:40) into training and validation data sets. In all, 27 pairs of cut points for PR and PD were considered: PR (10% to 50% decrease by 5% increments) and PD (10% to 20% increase by 5% increments), for which 30% and 20% correspond to the RECIST categorization. Cox proportional hazards models with landmark analyses at 12 and 24 weeks stratified by study and number of lesions (fewer than three v three or more) and adjusted for average baseline tumor size were used to assess the impact of each metric on overall survival (OS). Model discrimination was assessed by using the concordance index (c-index).

RESULTS

Standard RECIST cut points demonstrated predictive ability similar to the alternate PR and PD cut points. Regardless of tumor type, the TriTR, DiTR, and DCR metrics had similar predictive performance. The 24-week metrics (albeit with higher c-index point estimate) were not meaningfully better than the 12-week metrics. None of the metrics did particularly well for breast cancer.

CONCLUSION

Alternative cut points to RECIST standards provided no meaningful improvement in OS prediction. Metrics assessed at 12 weeks have good predictive performance.

摘要

目的

我们试图测试和验证三分类肿瘤反应(TriTR;完全缓解[CR]或部分缓解[PR]比稳定疾病[SD]比进展疾病[PD])、疾病控制率(DCR;CR/PR/SD 比 PD)和二分类肿瘤反应(DiTR;CR/PR 比其他)的预测效用,使用替代的 PR 和 PD 切点。使用为指导实体瘤反应评估标准(RECIST)1.1 版而组装的数据仓库。

方法

来自 13 项试验(5480 例转移性乳腺癌、非小细胞肺癌或结直肠癌患者)的数据被随机分为训练集和验证数据集(60:40)。总共考虑了 27 对 PR 和 PD 的切点:PR(10%至 50%减少,每次减少 5%)和 PD(10%至 20%增加,每次增加 5%),其中 30%和 20%分别对应于 RECIST 分类。使用 Cox 比例风险模型,带有 12 周和 24 周的里程碑分析,按研究和病变数量分层(少于 3 个 v 3 个或更多个),并根据平均基线肿瘤大小进行调整,用于评估每个指标对总生存(OS)的影响。通过使用一致性指数(c-index)来评估模型的判别能力。

结果

标准 RECIST 切点与替代的 PR 和 PD 切点表现出相似的预测能力。无论肿瘤类型如何,TriTR、DiTR 和 DCR 指标均具有相似的预测性能。24 周的指标(尽管 c-index 点估计值较高)并没有比 12 周的指标有明显的改善。这些指标对乳腺癌都没有特别好的效果。

结论

替代 RECIST 标准的切点并没有在 OS 预测方面提供有意义的改进。在 12 周评估的指标具有良好的预测性能。

相似文献

1
Evaluation of alternate categorical tumor metrics and cut points for response categorization using the RECIST 1.1 data warehouse.
J Clin Oncol. 2014 Mar 10;32(8):841-50. doi: 10.1200/JCO.2013.52.3019. Epub 2014 Feb 10.
3
Evaluating Continuous Tumor Measurement-Based Metrics as Phase II Endpoints for Predicting Overall Survival.
J Natl Cancer Inst. 2015 Aug 21;107(11). doi: 10.1093/jnci/djv239. Print 2015 Nov.
5
Comparison of continuous versus categorical tumor measurement-based metrics to predict overall survival in cancer treatment trials.
Clin Cancer Res. 2011 Oct 15;17(20):6592-9. doi: 10.1158/1078-0432.CCR-11-0822. Epub 2011 Aug 31.
7
Clinical Significance of Discordance between Carcinoembryonic Antigen Levels and RECIST in Metastatic Colorectal Cancer.
Cancer Res Treat. 2018 Jan;50(1):283-292. doi: 10.4143/crt.2016.537. Epub 2017 May 8.
8
Volumetric Versus Unidimensional Measures of Metastatic Colorectal Cancer in Assessing Disease Response.
Clin Colorectal Cancer. 2017 Dec;16(4):324-333.e1. doi: 10.1016/j.clcc.2017.03.009. Epub 2017 Mar 27.
9
Change in tumor size by RECIST correlates linearly with overall survival in phase I oncology studies.
J Clin Oncol. 2012 Jul 20;30(21):2684-90. doi: 10.1200/JCO.2011.36.4752. Epub 2012 Jun 11.

引用本文的文献

5
Clinicopathologic outcomes of preoperative targeted therapy in patients with clinical stage I to III non-small cell lung cancer.
J Thorac Cardiovasc Surg. 2023 May;165(5):1682-1693.e3. doi: 10.1016/j.jtcvs.2022.10.056. Epub 2022 Nov 17.
7
Modeling tumor measurement data to predict overall survival (OS) in cancer clinical trials.
Contemp Clin Trials Commun. 2021 Aug 9;23:100827. doi: 10.1016/j.conctc.2021.100827. eCollection 2021 Sep.
8
Utilization of target lesion heterogeneity for treatment efficacy assessment in late stage lung cancer.
PLoS One. 2021 Jul 1;16(7):e0252041. doi: 10.1371/journal.pone.0252041. eCollection 2021.
9
A Primer on RECIST 1.1 for Oncologic Imaging in Clinical Drug Trials.
Radiol Imaging Cancer. 2021 May;3(3):e210008. doi: 10.1148/rycan.2021210008.
10

本文引用的文献

2
Comparison of continuous versus categorical tumor measurement-based metrics to predict overall survival in cancer treatment trials.
Clin Cancer Res. 2011 Oct 15;17(20):6592-9. doi: 10.1158/1078-0432.CCR-11-0822. Epub 2011 Aug 31.
4
Tumor status at 12 weeks predicts survival in advanced colorectal cancer: findings from NCCTG N9741.
Oncologist. 2011;16(6):859-67. doi: 10.1634/theoncologist.2011-0064. Epub 2011 May 31.
6
Endpoints in phase II trials for advanced non-small cell lung cancer.
J Thorac Oncol. 2010 Jan;5(1):3-9. doi: 10.1097/JTO.0b013e3181c0a313.
7
Response rates: a valuable signal of promising activity?
Cancer J. 2009 Sep-Oct;15(5):361-5. doi: 10.1097/PPO.0b013e3181bd045f.
9
Alternate endpoints for screening phase II studies.
Clin Cancer Res. 2009 Mar 15;15(6):1873-82. doi: 10.1158/1078-0432.CCR-08-2034. Epub 2009 Mar 10.
10
Individual patient data analysis to assess modifications to the RECIST criteria.
Eur J Cancer. 2009 Jan;45(2):248-60. doi: 10.1016/j.ejca.2008.10.027. Epub 2008 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验