Suppr超能文献

热激蛋白101与热胁迫相关32-kD蛋白之间的正反馈回路调节长期获得性耐热性,这说明了水稻品种中不同的热胁迫反应。

A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties.

作者信息

Lin Meng-yi, Chai Kuo-hsing, Ko Swee-suak, Kuang Lin-yun, Lur Huu-sheng, Charng Yee-yung

机构信息

Agricultural Biotechnology Research Center , Academia Sinica, Taipei 11529, Taiwan, Republic of China;

出版信息

Plant Physiol. 2014 Apr;164(4):2045-53. doi: 10.1104/pp.113.229609. Epub 2014 Feb 11.

Abstract

Heat stress is an important factor that has a negative impact on rice (Oryza sativa) production. To alleviate this problem, it is necessary to extensively understand the genetic basis of heat tolerance and adaptability to heat stress in rice. Here, we report the molecular mechanism underlying heat acclimation memory that confers long-term acquired thermotolerance (LAT) in this monocot plant. Our results showed that a positive feedback loop formed by two heat-inducible genes, HEAT SHOCK PROTEIN101 (HSP101) and HEAT STRESS-ASSOCIATED 32-KD PROTEIN (HSA32), at the posttranscriptional level prolongs the effect of heat acclimation in rice seedlings. The interplay between HSP101 and HSA32 also affects basal thermotolerance of rice seeds. These findings are similar to those reported for the dicot plant Arabidopsis (Arabidopsis thaliana), suggesting a conserved function in plant heat stress response. Comparison between two rice cultivars, japonica Nipponbare and indica N22 showed opposite performance in basal thermotolerance and LAT assays. 'N22' seedlings have a higher basal thermotolerance level than cv Nipponbare and vice versa at the LAT level, indicating that these two types of thermotolerance can be decoupled. The HSP101 and HSA32 protein levels were substantially higher in cv Nipponbare than in cv N22 after a long recovery following heat acclimation treatment, at least partly explaining the difference in the LAT phenotype. Our results point out the complexity of thermotolerance diversity in rice cultivars, which may need to be taken into consideration when breeding for heat tolerance for different climate scenarios.

摘要

热胁迫是对水稻(Oryza sativa)生产产生负面影响的一个重要因素。为缓解这一问题,有必要深入了解水稻耐热性和对热胁迫适应性的遗传基础。在此,我们报道了赋予这种单子叶植物长期获得性耐热性(LAT)的热适应记忆的分子机制。我们的结果表明,由两个热诱导基因热激蛋白101(HSP101)和热胁迫相关32-kD蛋白(HSA32)在转录后水平形成的正反馈环延长了水稻幼苗热适应的效果。HSP101和HSA32之间的相互作用也影响水稻种子的基础耐热性。这些发现与双子叶植物拟南芥(Arabidopsis thaliana)报道的结果相似,表明在植物热胁迫反应中具有保守功能。粳稻品种日本晴和籼稻品种N22在基础耐热性和LAT测定中的表现相反。“N22”幼苗的基础耐热性水平高于日本晴品种,反之,在LAT水平上日本晴品种高于“N22”,这表明这两种耐热性可以解耦。热适应处理后的长时间恢复后,日本晴品种中的HSP101和HSA32蛋白水平显著高于“N22”品种,这至少部分解释了LAT表型的差异。我们的结果指出了水稻品种耐热性多样性的复杂性,在针对不同气候情景培育耐热品种时可能需要考虑这一点。

相似文献

引用本文的文献

3
Priming thermotolerance: unlocking heat resilience for climate-smart crops.启动耐热性:为适应气候的作物释放热弹性。
Philos Trans R Soc Lond B Biol Sci. 2025 May 29;380(1927):20240234. doi: 10.1098/rstb.2024.0234.
4
Can autophagy enhance crop resilience to environmental stress?自噬能增强作物对环境胁迫的耐受性吗?
Philos Trans R Soc Lond B Biol Sci. 2025 May 29;380(1927):20240245. doi: 10.1098/rstb.2024.0245.
7
Emerging strategies to improve heat stress tolerance in crops.提高作物耐热胁迫耐受性的新兴策略。
aBIOTECH. 2025 Jan 24;6(1):97-115. doi: 10.1007/s42994-024-00195-z. eCollection 2025 Mar.

本文引用的文献

3
Genetic trade-offs and conditional neutrality contribute to local adaptation.遗传权衡和条件中性有助于地方适应。
Mol Ecol. 2013 Feb;22(3):699-708. doi: 10.1111/j.1365-294X.2012.05522.x. Epub 2012 Mar 15.
8
The 1001 genomes project for Arabidopsis thaliana.拟南芥1001基因组计划。
Genome Biol. 2009;10(5):107. doi: 10.1186/gb-2009-10-5-107. Epub 2009 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验