Otero Maria G, Alloatti Matías, Cromberg Lucas E, Almenar-Queralt Angels, Encalada Sandra E, Pozo Devoto Victorio M, Bruno Luciana, Goldstein Lawrence S B, Falzone Tomás L
Instituto de Biología Celular y Neurociencias (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires CP 1121, Argentina.
J Cell Sci. 2014 Apr 1;127(Pt 7):1537-49. doi: 10.1242/jcs.140780. Epub 2014 Feb 12.
Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.
神经元中泛素-蛋白酶体系统介导的蛋白质降解依赖于蛋白酶体复合物的正确运输。在神经退行性疾病中,轴突内蛋白质的聚集和积累将运输缺陷与降解障碍联系起来;然而,蛋白酶体的运输特性仍然未知。在这里,我们通过体内实验揭示了组装好的功能性26S蛋白酶体复合物的快速顺向运输。一个用于追踪荧光蛋白酶体的高分辨率跟踪系统揭示了三种运动类型:主动驱动的蛋白酶体轴突运输、在粘弹性轴丝中的扩散行为以及蛋白酶体受限运动。我们发现,主动蛋白酶体运输依赖于运动功能,因为驱动蛋白KIF5B亚基的敲低导致顺向蛋白酶体通量和节段速度密度受损。最后,我们揭示了神经元蛋白酶体与细胞内膜相互作用,并确定了荧光蛋白酶体与突触前体囊泡、高尔基体衍生囊泡、溶酶体和线粒体的协同运输。综上所述,我们的结果揭示了快速轴突运输是蛋白酶体运输的一种新机制,它依赖于膜性货物的“搭便车”和分子马达的功能。我们进一步推测,蛋白酶体运输缺陷可能会促进神经退行性疾病中异常蛋白质的清除。