Alloatti Matias, Bruno Luciana, Falzone Tomas L
Instituto de Biología Celular y Neurociencias (IBCN) CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
Facultad de Ciencias Exactas y Naturales, Departamento de Física (IFIBA) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
Methods Mol Biol. 2018;1727:217-226. doi: 10.1007/978-1-4939-7571-6_16.
Neurons rely on complex axonal transport mechanisms that mediate the intracellular dynamics of proteins, vesicles, and mitochondria along their high polarized structure. The fast improvement of live imaging techniques of fluorescent cargos allowed the identification of the diverse motion properties of different transported molecules. These properties arise as the result of molecular interactions between many players involved in axonal transport. Motor proteins, microtubule tracks, cargo association, and even axonal viscosity contribute to the proper axonal dynamics of different cargos. The unique properties in each cargo determine their distribution and location that is relevant to ensure neuronal cell activity and survival. This chapter provides a computational-based method for the generation of cargo trajectories and the identification of different motion regimes while cargo moves along axons. Then, the procedure to extract relevant parameters from active, diffusive, and confined motion is provided. These properties will allow a better comprehension of the nature and characteristics of cargo motion in living cells, therefore contributing to understanding the consequences of transport defects that arise during diseases of the nervous system.
神经元依赖复杂的轴突运输机制,这些机制介导蛋白质、囊泡和线粒体沿着其高度极化的结构进行细胞内动态变化。荧光货物活体成像技术的快速发展使得能够识别不同运输分子的多样运动特性。这些特性是轴突运输中许多参与分子之间分子相互作用的结果。运动蛋白、微管轨道、货物结合,甚至轴突粘度都有助于不同货物的正常轴突动态变化。每种货物的独特特性决定了它们的分布和位置,这对于确保神经元细胞活性和存活至关重要。本章提供了一种基于计算的方法,用于生成货物轨迹并识别货物沿轴突移动时的不同运动状态。然后,提供了从主动、扩散和受限运动中提取相关参数的程序。这些特性将有助于更好地理解活细胞中货物运动的本质和特征,从而有助于理解神经系统疾病期间出现的运输缺陷的后果。