National Center for Forensic Science and Department of Chemistry, College of Science, University of Central Florida, P.O. Box 162367, Orlando, FL 32816-2367, United States.
Forensic Sci Int. 2014 Mar;236:84-9. doi: 10.1016/j.forsciint.2013.12.026. Epub 2014 Jan 7.
The unsupervised artificial neural networks method of self-organizing feature maps (SOFMs) is applied to spectral data of ignitable liquids to visualize the grouping of similar ignitable liquids with respect to their American Society for Testing and Materials (ASTM) class designations and to determine the ions associated with each group. The spectral data consists of extracted ion spectra (EIS), defined as the time-averaged mass spectrum across the chromatographic profile for select ions, where the selected ions are a subset of ions from Table 2 of the ASTM standard E1618-11. Utilization of the EIS allows for inter-laboratory comparisons without the concern of retention time shifts. The trained SOFM demonstrates clustering of the ignitable liquid samples according to designated ASTM classes. The EIS of select samples designated as miscellaneous or oxygenated as well as ignitable liquid residues from fire debris samples are projected onto the SOFM. The results indicate the similarities and differences between the variables of the newly projected data compared to those of the data used to train the SOFM.
无监督人工神经网络自组织特征映射 (SOFM) 方法应用于可燃液体的光谱数据,以可视化相似可燃液体相对于其美国测试材料协会 (ASTM) 分类设计的分组,并确定与每个组相关的离子。光谱数据由提取的离子光谱 (EIS) 组成,定义为为选定离子的色谱图的整个时间段的平均质谱,其中选定离子是 ASTM 标准 E1618-11 表 2 中的离子子集。EIS 的利用允许在不考虑保留时间偏移的情况下进行实验室间比较。经过训练的 SOFM 根据指定的 ASTM 类别对可燃液体样品进行聚类。选择的样品的 EIS 指定为杂项或含氧,以及火灾残骸样品中的可燃液体残留物,被投射到 SOFM 上。结果表明,与用于训练 SOFM 的数据相比,新投射数据的变量之间存在相似性和差异。