Yu Yiling, Huang Lujun, Cao Linyou
Department of Physics, North Carolina State University, Raleigh NC 27695.
Department of Materials Science and Engineering, North Carolina State University, Raleigh NC 27695.
Sci Rep. 2014 Feb 17;4:4107. doi: 10.1038/srep04107.
Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques.
通过光捕获来理解半导体材料中太阳能吸收的最大增强,有望推动可负担得起的太阳能电池的发展。然而,传统的朗伯极限仅对吸收较弱的理想化材料系统有效,由于太阳能电池中使用的典型半导体材料具有大量吸收,因此该极限不适用于这些材料。在此,我们从理论上证明了半导体材料的最大太阳能吸收增强,并阐明了光捕获结构接近理论最大值的一般设计原则。遵循这些原则,我们设计了一种实用的光捕获结构,该结构可使超薄半导体材料层(例如10纳米厚的非晶硅)吸收带隙以上>90%的太阳光。该设计中的活性材料体积比文献中现有的任何太阳能光捕获设计小一个数量级。这项工作为终极太阳能光捕获技术的发展指明了方向。